1
|
Ma R, Xie Q, Li H, Guo X, Wang J, Li Y, Ren M, Gong D, Gao T. l-Borneol Exerted the Neuroprotective Effect by Promoting Angiogenesis Coupled With Neurogenesis via Ang1-VEGF-BDNF Pathway. Front Pharmacol 2021; 12:641894. [PMID: 33746762 PMCID: PMC7973462 DOI: 10.3389/fphar.2021.641894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
At present, Stroke is still one of the leading causes of population death worldwide and leads to disability. Traditional Chinese medicine plays an important role in the prevention or treatment of stroke. l-borneol, a traditional Chinese medicine, has been used in China to treat stroke for thousands of years. However, its mechanism of action is unclear. After cerebral ischemia, promoting angiogenesis after cerebral ischemia and providing nutrition for the infarct area is an important strategy to improve the damage in the ischemic area, but it is also essential to promote neurogenesis and replenish new neurons. Here, our research shows that l-borneol can significantly improve the neurological deficits of pMCAO model rats, reduce cerebral infarction, and improve the pathological damage of cerebral ischemia. and significantly increase serum level of Ang-1 and VEGF, and significantly decrease level of ACE and Tie2 to promote angiogenesis. PCR and WB showed the same results. Immunohistochemistry also showed that l-borneol can increase the number of CD34 positive cells, further verifying that l-borneol can play a neuroprotective effect by promoting angiogenesis after cerebral ischemia injury. In addition, l-borneol can significantly promote the expression level of VEGF, BDNF and inhibit the expression levels of TGF-β1 and MMP9 to promote neurogenesis. The above suggests that l-borneol can promote angiogenesis coupled neurogenesis by regulating Ang1-VEGF-BDNF to play a neuroprotective effect. Molecular docking also shows that l-borneol has a very high binding rate with the above target, which further confirmed the target of l-borneol to improve cerebral ischemic injury. These results provide strong evidence for the treatment of cerebral ischemia with l-borneol and provide reference for future research.
Collapse
Affiliation(s)
- Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqing Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daoyin Gong
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Gao
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Adverse Reaction Monitoring Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Jones V, Finch E, Copley A. Aphasia and reperfusion therapies in hyper-acute settings: A scoping review. INTERNATIONAL JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2019; 21:355-367. [PMID: 29614891 DOI: 10.1080/17549507.2018.1448894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Purpose: Reperfusion therapies are medical treatments that restore blood flow either by surgical removal of a blood clot or with medications that dissolve clots. The introduction of reperfusion therapies has the potential to change the presentation of aphasia following acute ischaemic stroke (AIS). This scoping study will explore the relationship between aphasia and reperfusion therapies from a speech-language pathology perspective. Method: A systematic literature search was performed on studies published up until October 2016. Relevant studies that reported on aphasia and reperfusion therapy were assessed for quality and the relationship between the two. Results: Overall, 27 studies were identified, these studies were heterogeneous in nature. Despite speech-language pathologists filling a central role in management of aphasia, only seven of these studies mentioned involvement of speech-language pathologists, with minimal information about the precise nature of the involvement of speech-language pathology services. Conclusion: Based on this scoping review, reperfusion therapy appears to be impacting on the presentation of aphasia. A prospective study into reperfusion therapy and aphasia is required to inform speech-language pathologists on this patient population.
Collapse
Affiliation(s)
- Victoria Jones
- School of Health and Rehabilitation Sciences, The University of Queensland , Brisbane , Australia
- Centre for Functioning and Health Research, Metro South Health , Brisbane , Australia , and
| | - Emma Finch
- School of Health and Rehabilitation Sciences, The University of Queensland , Brisbane , Australia
- Centre for Functioning and Health Research, Metro South Health , Brisbane , Australia , and
- Speech Pathology Department, Princess Alexandra Hospital , Brisbane , Australia
| | - Anna Copley
- School of Health and Rehabilitation Sciences, The University of Queensland , Brisbane , Australia
| |
Collapse
|
3
|
Dong T, Chen N, Ma X, Wang J, Wen J, Xie Q, Ma R. The protective roles of L-borneolum, D-borneolum and synthetic borneol in cerebral ischaemia via modulation of the neurovascular unit. Biomed Pharmacother 2018; 102:874-883. [PMID: 29728011 DOI: 10.1016/j.biopha.2018.03.087] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Borneol has been used to treat stroke in China since ancient times. In our previous research, we demonstrated the effect of borneol on cerebral ischaemia injury via meta-analysis. The neurovascular unit (NVU) is the structural basis of the preservation of the brain microenvironment and is believed to be a promising target in treating stroke. In this research, we explored the roles of three kinds of borneol, namely, L-borneolum (B1), D-borneolum (B2) and synthetic borneol (B3), in the NVU with permanent middle cerebral artery occluded (pMCAO) rats. METHODS The Longa scoring method was used to evaluate nerve function deficits in the pMCAO rats. Awakening time, brain water content, brain index and brain edema rate were also measured. TTC staining was used to calculate the cerebral infarction rate. The morphology of the ischaemia penumbra brain tissue was observed via HE staining, and the neuronal denatured cell index (DCI) was calculated. An enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of vascular endothelial growth factor VEGF and TNF-α in the serum. Moreover, the ultrastructures of the neurons and of the blood-brain barrier (BBB) were observed using transmission electron microscopy. The expression levels of Claudin-5, Bcl-2 and Bax in the ischaemia penumbra of pMCAO rats were detected using real-time PCR and immunohistochemistry. RESULTS Pretreatment with B1, B2 and B3 delayed the recovery time (P < 0.01). B1 remarkably ameliorated neurological deficits 24 h after cerebral ischaemia (P < 0.05). Moreover, B1 and B3 were both able to ameliorate brain edema and the area of cerebral infarction. In addition, B1, B2 and B3 all increased serum VEGF levels and decreased serum TNF-α levels (P < 0.01). For the ultrastructure determination, the BBB and the nerve centre were significantly improved by B1, B2 and B3. The mechanistic exploration revealed that B2 and B3 protected the brain by reducing the Bax/Bcl-2 ratio (P < 0.05, P < 0.01, respectively). Immunohistochemistry suggested that B1, B2 and B3 could also enhance the expression of Claudin-5 (P < 0.01). CONCLUSION The three kinds of borneol demonstrated different protective effects on cerebral ischaemia injury. L-Borneolum displayed the most prominent anti-cerebral ischaemia effect among them. The mechanism was most likely executed via anti-apoptosis and anti-inflammation effects and maintenance of the stability of the BBB and TJs to comprehensively improve NVU function.
Collapse
Affiliation(s)
- Taiwei Dong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nian Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jian Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing Wen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
4
|
Fukuta T, Ishii T, Asai T, Sato A, Kikuchi T, Shimizu K, Minamino T, Oku N. Treatment of stroke with liposomal neuroprotective agents under cerebral ischemia conditions. Eur J Pharm Biopharm 2015; 97:1-7. [PMID: 26455340 DOI: 10.1016/j.ejpb.2015.09.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 08/21/2015] [Accepted: 09/30/2015] [Indexed: 01/09/2023]
Abstract
Since the proportion of patients given thrombolytic therapy with tissue plasminogen activator (t-PA) is very limited because of the narrow therapeutic window, the development of new therapies for ischemic stroke has been desired. We previously reported that liposomes injected intravenously accumulate in the ischemic region of the brain via disruption of the blood-brain barrier that occurs under cerebral ischemia. In the present study, we investigated the efficacy of a liposomal neuroprotective agent in middle cerebral artery occlusion (MCAO) rats to develop ischemic stroke therapy prior to the recovery of cerebral blood flow. For this purpose, PEGylated liposomes encapsulating FK506 (FK506-liposomes) were prepared and injected intravenously into MCAO rats after a 1-h occlusion. This treatment significantly suppressed the expansion of oxidative stress and brain cell damage. In addition, administration of FK506-liposomes before reperfusion significantly ameliorated motor function deficits of the rats caused by ischemia/reperfusion injury. These findings suggest that FK506-liposomes effectively exerted a neuroprotective effect during ischemic conditions, and that combination therapy with a liposomal neuroprotectant plus t-PA could be a promising therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Medical Biochemistry, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; Japan Society for the Promotion of Science (JSPS), 8 Ichiban-cho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - Takayuki Ishii
- Department of Medical Biochemistry, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Akihiko Sato
- Department of Medical Biochemistry, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takashi Kikuchi
- Department of Medical Biochemistry, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kosuke Shimizu
- Department of Medical Biochemistry, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tetsuo Minamino
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoto Oku
- Department of Medical Biochemistry, University of Shizuoka Graduate School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
5
|
Tajiri N, Duncan K, Borlongan MC, Pabon M, Acosta S, de la Pena I, Hernadez-Ontiveros D, Lozano D, Aguirre D, Reyes S, Sanberg PR, Eve DJ, Borlongan CV, Kaneko Y. Adult stem cell transplantation: is gender a factor in stemness? Int J Mol Sci 2014; 15:15225-43. [PMID: 25170809 PMCID: PMC4200754 DOI: 10.3390/ijms150915225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 01/23/2023] Open
Abstract
Cell therapy now constitutes an important area of regenerative medicine. The aging of the population has mandated the discovery and development of new and innovative therapeutic modalities to combat devastating disorders such as stroke. Menstrual blood and Sertoli cells represent two sources of viable transplantable cells that are gender-specific, both of which appear to have potential as donor cells for transplantation in stroke. During the subacute phase of stroke, the use of autologous cells offers effective and practical clinical application and is suggestive of the many benefits of using the aforementioned gender-specific cells. For example, in addition to being exceptionally immunosuppressive, testis-derived Sertoli cells secrete many growth and trophic factors and have been shown to aid in the functional recovery of animals transplanted with fetal dopaminergic cells. Correspondingly, menstrual blood cells are easily obtainable and exhibit angiogenic characteristics, proliferative capability, and pluripotency. Of further interest is the ability of menstrual blood cells, following transplantation in stroke models, to migrate to the infarct site, secrete neurotrophic factors, regulate the inflammatory response, and be steered towards neural differentiation. From cell isolation to transplantation, we emphasize in this review paper the practicality and relevance of the experimental and clinical use of gender-specific stem cells, such as Sertoli cells and menstrual blood cells, in the treatment of stroke.
Collapse
Affiliation(s)
- Naoki Tajiri
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Kelsey Duncan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Mia C Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Mibel Pabon
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Sandra Acosta
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Ike de la Pena
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Diana Hernadez-Ontiveros
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Diego Lozano
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Daniela Aguirre
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Stephanny Reyes
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA. psanberg@.usf.edu
| | - David J Eve
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Cesar V Borlongan
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | - Yuji Kaneko
- Center of Excellence for Aging & Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
6
|
León-Jiménez C, Ruiz-Sandoval J, Chiquete E, Vega-Arroyo M, Arauz A, Murillo-Bonilla L, Ochoa-Guzmán A, Carrillo-Loza K, Ramos-Moreno A, Barinagarrementeria F, Cantú-Brito C. Tiempo de llegada hospitalaria y pronóstico funcional después de un infarto cerebral: resultados del estudio PREMIER. Neurologia 2014; 29:200-9. [DOI: 10.1016/j.nrl.2013.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/02/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022] Open
|
7
|
León-Jiménez C, Ruiz-Sandoval J, Chiquete E, Vega-Arroyo M, Arauz A, Murillo-Bonilla L, Ochoa-Guzmán A, Carrillo-Loza K, Ramos-Moreno A, Barinagarrementeria F, Cantú-Brito C. Hospital arrival time and functional outcome after acute ischaemic stroke: Results from the PREMIER study. NEUROLOGÍA (ENGLISH EDITION) 2014. [DOI: 10.1016/j.nrleng.2013.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Lakhan SE, Kirchgessner A, Tepper D, Leonard A. Matrix metalloproteinases and blood-brain barrier disruption in acute ischemic stroke. Front Neurol 2013; 4:32. [PMID: 23565108 PMCID: PMC3615191 DOI: 10.3389/fneur.2013.00032] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/21/2013] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke continues to be one of the most challenging diseases in translational neurology. Tissue plasminogen activator (tPA) remains the only approved treatment for acute ischemic stroke, but its use is limited to the first hours after stroke onset due to an increased risk of hemorrhagic transformation over time resulting in enhanced brain injury. In this review we discuss the role of matrix metalloproteinases (MMPs) in blood-brain barrier (BBB) disruption as a consequence of ischemic stroke. MMP-9 in particular appears to play an important role in tPA-associated hemorrhagic complications. Reactive oxygen species can enhance the effects of tPA on MMP activation through the loss of caveolin-1 (cav-1), a protein encoded in the cav-1 gene that serves as a critical determinant of BBB permeability. This review provides an overview of MMPs' role in BBB breakdown during acute ischemic stroke. The possible role of MMPs in combination treatment of acute ischemic stroke is also examined.
Collapse
Affiliation(s)
- Shaheen E Lakhan
- Biosciences Department, Global Neuroscience Initiative Foundation Beverly Hills, CA, USA ; Neurological Institute, Cleveland Clinic Cleveland, OH, USA
| | | | | | | |
Collapse
|
9
|
Hu G. Neuron damage and protection. Introduction. Clin Exp Pharmacol Physiol 2012; 39:564-5. [PMID: 22490086 DOI: 10.1111/j.1440-1681.2012.05710.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gang Hu
- Nanjing Medical University, Nanjing, China.
| |
Collapse
|