1
|
Stefanik E, Dubińska-Magiera M, Lewandowski D, Daczewska M, Migocka-Patrzałek M. Metabolic aspects of glycogenolysis with special attention to McArdle disease. Mol Genet Metab 2024; 142:108532. [PMID: 39018613 DOI: 10.1016/j.ymgme.2024.108532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024]
Abstract
The physiological function of muscle glycogen is to meet the energy demands of muscle contraction. The breakdown of glycogen occurs through two distinct pathways, primarily cytosolic and partially lysosomal. To obtain the necessary energy for their function, skeletal muscles utilise also fatty acids in the β-oxidation. Ketogenesis is an alternative metabolic pathway for fatty acids, which provides an energy source during fasting and starvation. Diseases arising from impaired glycogenolysis lead to muscle weakness and dysfunction. Here, we focused on the lack of muscle glycogen phosphorylase (PYGM), a rate-limiting enzyme for glycogenolysis in skeletal muscles, which leads to McArdle disease. Metabolic myopathies represent a group of genetic disorders characterised by the limited ability of skeletal muscles to generate energy. Here, we discuss the metabolic aspects of glycogenosis with a focus on McArdle disease, offering insights into its pathophysiology. Glycogen accumulation may influence the muscle metabolic dynamics in different ways. We emphasize that a proper treatment approach for such diseases requires addressing three important and interrelated aspects, which include: symptom relief therapy, elimination of the cause of the disease (lack of a functional enzyme) and effective and early diagnosis.
Collapse
Affiliation(s)
- Ewa Stefanik
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Damian Lewandowski
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335 Wrocław, Poland..
| |
Collapse
|
2
|
Mackels L, Servais L. The Importance of Early Treatment of Inherited Neuromuscular Conditions. J Neuromuscul Dis 2024; 11:253-274. [PMID: 38306060 DOI: 10.3233/jnd-230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
There has been tremendous progress in treatment of neuromuscular diseases over the last 20 years, which has transformed the natural history of these severely debilitating conditions. Although the factors that determine the response to therapy are many and in some instance remain to be fully elucidated, early treatment clearly has a major impact on patient outcomes across a number of inherited neuromuscular conditions. To improve patient care and outcomes, clinicians should be aware of neuromuscular conditions that require prompt treatment initiation. This review describes data that underscore the importance of early treatment of children with inherited neuromuscular conditions with an emphasis on data resulting from newborn screening efforts.
Collapse
Affiliation(s)
- Laurane Mackels
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Adult Neurology Department, Citadelle Hospital, Liège, Belgium
| | - Laurent Servais
- Neuromuscular Centre, Division of Paediatrics, University and University Hospital of Liège, Liège, Belgium
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
3
|
Karunanidhi A, Basu S, Zhao XJ, D'Annibale O, Van't Land C, Vockley J, Mohsen AW. Heptanoic and medium branched-chain fatty acids as anaplerotic treatment for medium chain acyl-CoA dehydrogenase deficiency. Mol Genet Metab 2023; 140:107689. [PMID: 37660571 PMCID: PMC10840664 DOI: 10.1016/j.ymgme.2023.107689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Triheptanoin (triheptanoylglycerol) has shown value as anaplerotic therapy for patients with long chain fatty acid oxidation disorders but is contraindicated in medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. In search for anaplerotic therapy for patients with MCAD deficiency, fibroblasts from three patients homozygous for the most common mutation, ACADMG985A/G985A, were treated with fatty acids hypothesized not to require MCAD for their metabolism, including heptanoic (C7; the active component of triheptanoin), 2,6-dimethylheptanoic (dMC7), 6-amino-2,4-dimethylheptanoic (AdMC7), or 4,8-dimethylnonanoic (dMC9) acids. Their effectiveness as anaplerotic fatty acids was assessed in live cells by monitoring changes in cellular oxygen consumption rate (OCR) and mitochondrial protein lysine succinylation, which reflects cellular succinyl-CoA levels, using immunofluorescence (IF) staining. Krebs cycle intermediates were also quantitated in these cells using targeted metabolomics. The four fatty acids induced positive changes in OCR parameters, consistent with their oxidative catalysis and utilization. Increases in cellular IF staining of succinylated lysines were observed, indicating that the fatty acids were effective sources of succinyl-CoA in the absence of media glucose, pyruvate, and lipids. The ability of MCAD deficient cells to metabolize C7 was confirmed by the ability of extracts to enzymatically utilize C7-CoA as substrate but not C8-CoA. To evaluate C7 therapeutic potential in vivo, Acadm-/- mice were treated with triheptanoin for seven days. Dose dependent increase in plasma levels of heptanoyl-, valeryl-, and propionylcarnitine indicated efficient metabolism of the medication. The pattern of the acylcarnitine profile paralleled resolution of liver pathology including reversing hepatic steatosis, increasing hepatic glycogen content, and increasing hepatocyte protein succinylation, all indicating improved energy homeostasis in the treated mice. These results provide the impetus to evaluate triheptanoin and the medium branched chain fatty acids as potential therapeutic agents for patients with MCAD deficiency.
Collapse
Affiliation(s)
- Anuradha Karunanidhi
- Division of Genetic and Genomic Medicine, Department of Pediatrics, School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh; Pittsburgh, PA 15224, USA
| | - Shakuntala Basu
- Division of Genetic and Genomic Medicine, Department of Pediatrics, School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh; Pittsburgh, PA 15224, USA
| | - Xue-Jun Zhao
- Division of Genetic and Genomic Medicine, Department of Pediatrics, School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh; Pittsburgh, PA 15224, USA
| | - Olivia D'Annibale
- Division of Genetic and Genomic Medicine, Department of Pediatrics, School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh; Pittsburgh, PA 15224, USA; Department of Human Genetics, School of Public Health, University of Pittsburgh; Pittsburgh, PA 15260, USA
| | - Clinton Van't Land
- Division of Genetic and Genomic Medicine, Department of Pediatrics, School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh; Pittsburgh, PA 15224, USA
| | - Jerry Vockley
- Division of Genetic and Genomic Medicine, Department of Pediatrics, School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh; Pittsburgh, PA 15224, USA; Department of Human Genetics, School of Public Health, University of Pittsburgh; Pittsburgh, PA 15260, USA
| | - Al-Walid Mohsen
- Division of Genetic and Genomic Medicine, Department of Pediatrics, School of Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh; Pittsburgh, PA 15224, USA; Department of Human Genetics, School of Public Health, University of Pittsburgh; Pittsburgh, PA 15260, USA.
| |
Collapse
|
4
|
Karunanidhi A, Van’t Land C, Rajasundaram D, Grings M, Vockley J, Mohsen AW. Medium branched chain fatty acids improve the profile of tricarboxylic acid cycle intermediates in mitochondrial fatty acid β-oxidation deficient cells: A comparative study. J Inherit Metab Dis 2022; 45:541-556. [PMID: 35076099 PMCID: PMC9090965 DOI: 10.1002/jimd.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/09/2022] [Accepted: 01/24/2022] [Indexed: 12/06/2022]
Abstract
Inherited errors of mitochondrial fatty acid β-oxidation (FAO) are life threatening, even with optimum care. FAO is the major source of energy for heart and is critical for skeletal muscles especially during physiologic stress. Clinical trials revealed that triheptanoin (commercially known as Dojolvi; C7G), improved heart function and decreased hypoglycemia in long chain FAO disorders, but other symptoms including rhabdomyolysis persisted, suggesting suboptimal tissue distribution/utilization of heptanoic acid (C7) conjugates and/or rapid liver breakdown. In this study, medium branched chain fatty acids were tested as potential anaplerotic treatments in fibroblasts from patients deficient in very long chain acyl-CoA dehydrogenase (VLCAD), long chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD), trifunctional protein (TFP), and carnitine palmitoyltransferase II (CPT II). Cells were cultured to near confluency and treated with C7, 2,6-dimethylheptanoic acid (dMC7), 6-amino-2,4-dimethylheptanoic acid (AdMC7), or 4,8-dimethylnonanoic acid (dMC9) for 72 h and targeted metabolomics performed. The profile of TCA cycle intermediates was improved in cells treated with these branched chain fatty acids compared with C7. Intracellular propionate was higher in AdMC7 treated cells compared with C7 in VLCAD, LCHAD, and TFP deficient cell lines. With AdMC7 treatment, succinate was higher in CPT II and VLCAD deficient cells, compared with C7. Malate and glutamate were consistently higher in AdMC7 treated VLCAD, LCHAD, TFP, and CPT II deficient cells compared with the C7 treatment. The results provide the impetus to further evaluate and consider branched chain fatty acids as viable anaplerotic therapy for fatty acid oxidation disorders and other diseases.
Collapse
Affiliation(s)
- Anuradha Karunanidhi
- Department of Pediatrics, School of Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Clinton Van’t Land
- Department of Pediatrics, School of Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, School of Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mateus Grings
- Department of Pediatrics, School of Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- PPG Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jerry Vockley
- Department of Pediatrics, School of Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Al-Walid Mohsen
- Department of Pediatrics, School of Medicine, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Hennis PJ, Murphy E, Meijer RI, Lachmann RH, Ramachandran R, Bordoli C, Rayat G, Tomlinson DJ. Aerobic capacity and skeletal muscle characteristics in glycogen storage disease IIIa: an observational study. Orphanet J Rare Dis 2022; 17:28. [PMID: 35101075 PMCID: PMC8802498 DOI: 10.1186/s13023-022-02184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background Individuals with glycogen storage disease IIIa (GSD IIIa) (OMIM #232400) experience muscle weakness and exercise limitation that worsen through adulthood. However, normative data for markers of physical capacity, such as strength and cardiovascular fitness, are limited. Furthermore, the impact of the disease on muscle size and quality is unstudied in weight bearing skeletal muscle, a key predictor of physical function. We aim to produce normative reference values of aerobic capacity and strength in individuals with GSD IIIa, and to investigate the role of muscle size and quality on exercise impairment. Results Peak oxygen uptake (V̇O2peak) was lower in the individuals with GSD IIIa than predicted based on demographic data (17.0 (9.0) ml/kg/min, 53 (24)% of predicted, p = 0.001). Knee extension maximum voluntary contraction (MVC) was also substantially lower than age matched predicted values (MVC: 146 (116) Nm, 57% predicted, p = 0.045), though no difference was found in MVC relative to body mass (1.88 (2.74) Nm/kg, 61% of predicted, p = 0.263). There was a strong association between aerobic capacity and maximal leg strength (r = 0.920; p = 0.003). Substantial inter-individual variation was present, with a high physical capacity group that had normal leg strength (MVC), and relatively high V̇O2peak, and a low physical capacity that display impaired strength and substantially lower V̇O2peak. The higher physical capacity sub-group were younger, had larger Vastus Lateralis (VL) muscles, greater muscle quality, undertook more physical activity (PA), and reported higher health-related quality of life. Conclusions V̇O2peak and knee extension strength are lower in individuals with GSD IIIa than predicted based on their demographic data. Patients with higher physical capacity have superior muscle size and structure characteristics and higher health-related quality of life, than those with lower physical capacity. This study provides normative values of these important markers of physical capacity. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02184-1.
Collapse
|
6
|
Li Q, Yang C, Feng L, Zhao Y, Su Y, Liu H, Men H, Huang Y, Körner H, Wang X. Glutaric Acidemia, Pathogenesis and Nutritional Therapy. Front Nutr 2022; 8:704984. [PMID: 34977106 PMCID: PMC8714794 DOI: 10.3389/fnut.2021.704984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/26/2021] [Indexed: 01/13/2023] Open
Abstract
Glutaric acidemia (GA) are heterogeneous, genetic diseases that present with specific catabolic deficiencies of amino acid or fatty acid metabolism. The disorders can be divided into type I and type II by the occurrence of different types of recessive mutations of autosomal, metabolically important genes. Patients of glutaric acidemia type I (GA-I) if not diagnosed very early in infanthood, experience irreversible neurological injury during an encephalopathic crisis in childhood. If diagnosed early the disorder can be treated successfully with a combined metabolic treatment course that includes early catabolic emergency treatment and long-term maintenance nutrition therapy. Glutaric acidemia type II (GA- II) patients can present clinically with hepatomegaly, non-ketotic hypoglycemia, metabolic acidosis, hypotonia, and in neonatal onset cardiomyopathy. Furthermore, it features adult-onset muscle-related symptoms, including weakness, fatigue, and myalgia. An early diagnosis is crucial, as both types can be managed by simple nutraceutical supplementation. This review discusses the pathogenesis of GA and its nutritional management practices, and aims to promote understanding and management of GA. We will provide a detailed summary of current clinical management strategies of the glutaric academia disorders and highlight issues of nutrition therapy principles in emergency settings and outline some specific cases.
Collapse
Affiliation(s)
- Qian Li
- Department of Pharmacy, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Chunlan Yang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijuan Feng
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yazi Zhao
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Su
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong Liu
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongkang Men
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yan Huang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Heinrich Körner
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xinming Wang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Tucker-Bartley A, Lemme J, Gomez-Morad A, Shah N, Veliu M, Birklein F, Storz C, Rutkove S, Kronn D, Boyce AM, Kraft E, Upadhyay J. Pain Phenotypes in Rare Musculoskeletal and Neuromuscular Diseases. Neurosci Biobehav Rev 2021; 124:267-290. [PMID: 33581222 PMCID: PMC9521731 DOI: 10.1016/j.neubiorev.2021.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
For patients diagnosed with a rare musculoskeletal or neuromuscular disease, pain may transition from acute to chronic; the latter yielding additional challenges for both patients and care providers. We assessed the present understanding of pain across a set of ten rare, noninfectious, noncancerous disorders; Osteogenesis Imperfecta, Ehlers-Danlos Syndrome, Achondroplasia, Fibrodysplasia Ossificans Progressiva, Fibrous Dysplasia/McCune-Albright Syndrome, Complex Regional Pain Syndrome, Duchenne Muscular Dystrophy, Infantile- and Late-Onset Pompe disease, Charcot-Marie-Tooth Disease, and Amyotrophic Lateral Sclerosis. Through the integration of natural history, cross-sectional, retrospective, clinical trials, & case studies we described pathologic and genetic factors, pain sources, phenotypes, and lastly, existing therapeutic approaches. We highlight that while rare diseases possess distinct core pathologic features, there are a number of shared pain phenotypes and mechanisms that may be prospectively examined and therapeutically targeted in a parallel manner. Finally, we describe clinical and research approaches that may facilitate more accurate diagnosis, monitoring, and treatment of pain as well as elucidation of the evolving nature of pain phenotypes in rare musculoskeletal or neuromuscular illnesses.
Collapse
Affiliation(s)
- Anthony Tucker-Bartley
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jordan Lemme
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Andrea Gomez-Morad
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nehal Shah
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Miranda Veliu
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Frank Birklein
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, 55131, Germany
| | - Claudia Storz
- Department of Orthopedics, Physical Medicine and Rehabilitation, University Hospital LMU Munich, Munich, Bavaria, 80539, Germany
| | - Seward Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - David Kronn
- Department of Pathology and Pediatrics, New York Medical College, Valhalla, NY, 10595, USA; Medical Genetics, Inherited Metabolic & Lysosomal Storage Disorders Center, Boston Children's Health Physicians, Westchester, NY, 10532, USA
| | - Alison M Boyce
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eduard Kraft
- Department of Orthopedics, Physical Medicine and Rehabilitation, University Hospital LMU Munich, Munich, Bavaria, 80539, Germany; Interdisciplinary Pain Unit, University Hospital LMU Munich, Munich, 80539, Germany
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
8
|
Mereis M, Wanders RJA, Schoonen M, Dercksen M, Smuts I, van der Westhuizen FH. Disorders of flavin adenine dinucleotide metabolism: MADD and related deficiencies. Int J Biochem Cell Biol 2021; 132:105899. [PMID: 33279678 DOI: 10.1016/j.biocel.2020.105899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Multiple acyl-coenzyme A dehydrogenase deficiency (MADD), or glutaric aciduria type II (GAII), is a group of clinically heterogeneous disorders caused by mutations in electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) - the two enzymes responsible for the re-oxidation of enzyme-bound flavin adenine dinucleotide (FADH2) via electron transfer to the respiratory chain at the level of coenzyme Q10. Over the past decade, an increasing body of evidence has further coupled mutations in FAD metabolism (including intercellular riboflavin transport, FAD biosynthesis and FAD transport) to MADD-like phenotypes. In this review we provide a detailed description of the overarching and specific metabolic pathways involved in MADD. We examine the eight associated genes (ETFA, ETFB, ETFDH, FLAD1, SLC25A32 and SLC52A1-3) and clinical phenotypes, and report ∼436 causative mutations following a systematic literature review. Finally, we focus attention on the value and shortcomings of current diagnostic approaches, as well as current and future therapeutic options for MADD and its phenotypic disorders.
Collapse
Affiliation(s)
- Michelle Mereis
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Maryke Schoonen
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Marli Dercksen
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | | |
Collapse
|
9
|
Wehbe Z, Tucci S. Therapeutic potential of triheptanoin in metabolic and neurodegenerative diseases. J Inherit Metab Dis 2020; 43:385-391. [PMID: 31778232 DOI: 10.1002/jimd.12199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
Abstract
In the past 15 years the potential of triheptanoin for the treatment of several human diseases in the area of clinical nutrition has grown considerably. Use of this triglyceride of the odd-chain fatty acid heptanoate has been proposed and applied for the treatment of several conditions in which the energy supply from citric acid cycle intermediates or fatty acid degradation are impaired. Neurological diseases due to disturbed glucose metabolism or metabolic diseases associated with impaired β-oxidation of long chain fatty acid may especially take advantage of alternative substrate sources offered by the secondary metabolites of triheptanoin. Epilepsy due to deficiency of the GLUT1 transporter, as well as diseases associated with dysregulation of neuronal signalling, have been treated with triheptanoin supplementation, and very recently the advantages of this oil in long-chain fatty acid oxidation disorders have been reported. The present review summarises the published literature on the metabolism of triheptanoin including clinical reports related to the use of triheptanoin.
Collapse
Affiliation(s)
- Zeinab Wehbe
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sara Tucci
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics and Adolescent Medicine, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Glaubitz S, Schmidt K, Zschüntzsch J, Schmidt J. Myalgia in myositis and myopathies. Best Pract Res Clin Rheumatol 2019; 33:101433. [PMID: 31590993 DOI: 10.1016/j.berh.2019.101433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myalgia is a common symptom of various neuromuscular disorders: myalgia occurs in metabolic muscle diseases, inflammatory muscle diseases, dystrophic myopathies and myotonic muscle disorders. Myalgia leads to a significantly reduced quality of life. Other muscular symptoms that are present along with myalgia often provide the clue towards a diagnosis and include weakness, cramps and myotonia as well as the type of pain. In addition, extramuscular symptoms like an erythema in dermatomyositis can lead to the correct diagnosis. Basic diagnostic workup includes a detailed medical history, full neurologic assessment, laboratory tests, EMG and nerve conduction studies. Muscle imaging, genetic testing and muscle biopsy may be required to make a diagnosis. Whenever possible, treatment should aim to improve or correct the underlying cause for myalgia such as inflammation or hypothyroidism. Symptomatic therapy includes different avenues: Myotonia can be treated with mexiletine. Carbamazepine or phenytoin can be used in myotonic syndromes, particularly with muscle cramps. Pregabalin, gabapentin, or amitriptyline can be tried in conditions with myalgic pain. This review summarizes the symptoms, diagnostic strategies, and therapeutic approach in neuromuscular disorders that present with myalgia.
Collapse
Affiliation(s)
- Stefanie Glaubitz
- Department of Neurology, University Medical Center Göttingen, Germany
| | - Karsten Schmidt
- Department of Neurology, University Medical Center Göttingen, Germany
| | - Jana Zschüntzsch
- Department of Neurology, University Medical Center Göttingen, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Germany.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Regular exercise improves muscle and cardiovascular function, which is why exercise is used as an adjuvant treatment in myopathies. In this review, we provide an update on recent exercise studies (from 2016) performed in humans with inherited myopathy. RECENT FINDINGS Several studies provide new and interesting insight in the field of exercise in myopathies. A retrospective cohort study suggests that exercise may actually increase rate of disease progression in dysferlinopathy, and high intensity exercise, which is normally discouraged in muscle disorders because of the risk of muscle damage, is demonstrated to be an efficient time saving mode of exercise to train patients with facioscapulohumeral muscular dystrophy. Exoskeletons and antigravity trainers are examples of new devices, which provide an opportunity for very weak patients to train. Finally, several studies, including two randomized controlled trials, support the beneficial role of exercise as treatment of myopathy. SUMMARY The reviewed studies extend previous knowledge about exercise, indicating that exercise is generally safe and well tolerated, and improves functional outcomes in patients with inherited muscle disease. However, recent studies also highlight the fact that the effect of exercise differs with mode of exercise and exercise prescriptions should be disease specific.
Collapse
|
12
|
Abstract
Metabolic myopathies are a heterogeneous group of disorders characterized by inherited defects of enzymatic pathways involved in muscle cellular energetics and adenosine triphosphate synthesis. Skeletal and respiratory muscles are most affected. There are multiple mechanisms of disease. The age of onset and prognosis vary. Metabolic myopathies cause exercise intolerance, myalgia, and increase in muscle breakdown products during exercise. Some affect smooth muscle like the diaphragm and cause respiratory failure. The pathophysiology is complex and the evidence in literature to guide diagnosis and management is sparse. Treatment is limited. This review discusses the pathophysiology and diagnostic evaluation of these disorders.
Collapse
Affiliation(s)
- Patrick Koo
- Department of Respiratory, Critical Care, and Sleep Medicine, University of Tennessee College of Medicine Chattanooga, Erlanger Health System, 975 East 3rd Street, C-735, Chattanooga, TN 37403, USA.
| | - Jigme M Sethi
- Department of Respiratory, Critical Care, and Sleep Medicine, University of Tennessee College of Medicine Chattanooga, Erlanger Health System, 975 East 3rd Street, C-735, Chattanooga, TN 37403, USA
| |
Collapse
|
13
|
Abstract
Most of the glycogen metabolism disorders that affect skeletal muscle involve enzymes in glycogenolysis (myophosphorylase (PYGM), glycogen debranching enzyme (AGL), phosphorylase b kinase (PHKB)) and glycolysis (phosphofructokinase (PFK), phosphoglycerate mutase (PGAM2), aldolase A (ALDOA), β-enolase (ENO3)); however, 3 involve glycogen synthesis (glycogenin-1 (GYG1), glycogen synthase (GSE), and branching enzyme (GBE1)). Many present with exercise-induced cramps and rhabdomyolysis with higher-intensity exercise (i.e., PYGM, PFK, PGAM2), yet others present with muscle atrophy and weakness (GYG1, AGL, GBE1). A failure of serum lactate to rise with exercise with an exaggerated ammonia response is a common, but not invariant, finding. The serum creatine kinase (CK) is often elevated in the myopathic forms and in PYGM deficiency, but can be normal and increase only with rhabdomyolysis (PGAM2, PFK, ENO3). Therapy for glycogen storage diseases that result in exercise-induced symptoms includes lifestyle adaptation and carefully titrated exercise. Immediate pre-exercise carbohydrate improves symptoms in the glycogenolytic defects (i.e., PYGM), but can exacerbate symptoms in glycolytic defects (i.e., PFK). Creatine monohydrate in low dose may provide a mild benefit in PYGM mutations.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- Division of Neuromuscular & Neurometabolic Disorders, Departments of Pediatrics and Medicine, McMaster University, Hamilton Health Sciences Centre, Rm 2H26, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|