1
|
Ozkan G, Kamiloglu S, Demir N, Capanoglu E. Impact of High Pressure Processing on the In Vitro Bioaccessibility of Polyphenols in Sour Cherry (Prunus cerasus L.) Juice. ACS OMEGA 2025; 10:20038-20046. [PMID: 40415861 PMCID: PMC12096256 DOI: 10.1021/acsomega.5c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/13/2025] [Accepted: 04/22/2025] [Indexed: 05/27/2025]
Abstract
As the demand for minimally processed food products with fresh-like characteristics continues to grow, nonthermal techniques are becoming increasingly popular. Fruit juices, due to their significant health benefits, are excellent candidates for nonthermal treatments aimed at preserving maximum nutritional value. Sour cherry (Prunus cerasus L.) juice (SCJ) is particularly rich in polyphenols, especially anthocyanins. This study comparatively assessed the impact of high-pressure processing (HPP) (300-400-500 MPa/5-10-20 min) on the content and in vitro bioaccessibility of total phenolics (TPC), flavonoids (TFC), monomeric anthocyanins (TMAC), antioxidant capacity (TAC), and individual polyphenolic compounds in SCJ. The findings revealed that both thermal pasteurization and HPP treatments significantly enhanced polyphenol bioaccessibility in SCJ compared to untreated samples. Thermal treatment resulted in the highest bioaccessibility levels for TMAC (82%), TAC (120%), and individual polyphenolic compounds (86%). HPP-treated samples exhibited greater TFC bioaccessibility (60-82%) than thermally pasteurized SCJ (51%), with samples processed at 500 MPa showing improved bioaccessibility across most phenolic fractions due to enhanced cell permeability and mass transfer. However, HPP generally reduced TAC bioaccessibility (60-78%) compared to the control (83%), except under high-pressure conditions (500 MPa for 20 min), highlighting the complex interplay between processing parameters and polyphenol stability.
Collapse
Affiliation(s)
- Gulay Ozkan
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak34469, Istanbul, Türkiye
| | - Senem Kamiloglu
- Department
of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Gorukle16059, Bursa, Türkiye
- Science
and Technology Application and Research Center (BITUAM), Bursa Uludag University, Gorukle16059, Bursa, Türkiye
| | - Nurullah Demir
- Department
of Food Processing, Vocational School of Food, Agriculture and Livestock, Bingöl University, Bingöl12000, Türkiye
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak34469, Istanbul, Türkiye
| |
Collapse
|
2
|
Chaudhary K, Khalid S, Altemimi AB, Abrar S, Ansar S, Aslam N, Hussain M, Aadil RM. Advances in non-thermal technologies: A revolutionary approach to controlling microbial deterioration, enzymatic activity, and maintaining other quality parameters of fresh stone fruits and their processed products. Food Chem 2025; 464:141825. [PMID: 39504893 DOI: 10.1016/j.foodchem.2024.141825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Stone fruits and their processed products are highly valued in the whole world for their flavor, aroma, rich nutritional contents, and various health benefits. While large quantities of stone fruits are produced globally, significant losses occur due to improper handling and storage, from production to consumption. This review focuses on the application of advanced non-thermal treatment techniques for whole fresh stone fruits and their processed products. It provides a comprehensive assessment of the factors contributing to spoilage, along with the mechanisms, applications, and limitations of non-thermal techniques in reducing spoilage. Compared to traditional preservation methods, such as the use of artificial food additives, chemicals, thermal treatments, and low-temperature storage, these novel techniques demonstrate better results in minimizing spoilage. Moreover, non-thermal techniques are most sustainable and eco-friendly, as they reduce energy consumption, minimize chemical use, and generate less waste than traditional methods.
Collapse
Affiliation(s)
- Kashmala Chaudhary
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Samran Khalid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan..
| | - Ammar B Altemimi
- Food Science Department, College of Agriculture, University of Basrah, Basrah 61004, Iraq
| | - Saqib Abrar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sadia Ansar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Nabila Aslam
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan..
| |
Collapse
|
3
|
Lopes AC, Queirós RP, Inácio RS, Pinto CA, Casal S, Delgadillo I, Saraiva JA. High-Pressure Processing Effects on Microbiological Stability, Physicochemical Properties, and Volatile Profile of a Fruit Salad. Foods 2024; 13:1304. [PMID: 38731676 PMCID: PMC11083073 DOI: 10.3390/foods13091304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Nowadays, consumers are more aware of the effects of their diet on their health, and thus demand natural or minimally processed food products. Therefore, research has focused on processes that assure safe products without jeopardizing their nutritional properties. In this context, this work aimed to evaluate the effects of high-pressure processing (550 MPa/3 min/15 °C, HPP) on a fruit salad (composed of melon juice and pieces of Golden apple and Rocha pear) throughout 35 days of storage at 4 °C. For the physicochemical properties analysed (browning degree, polyphenol oxidase activity, antioxidant activity (ABTS assay), and volatile profile), a freshly made fruit salad was used, while for the microbiological tests (total aerobic mesophiles, and yeast and moulds) spoiled melon juice was added to the fruit salad to increase the microbial load and mimic a challenge test with a high initial microbial load. It was determined that processed samples were more microbiologically stable than raw samples, as HPP enabled a reduction of almost 4-log units of both total aerobic mesophiles and yeasts and moulds, as well as an almost 1.5-fold increase in titratable acidity of the unprocessed samples compared to HPP samples. Regarding browning degree, a significant increase (p < 0.05) was observed in processed versus unprocessed samples (roughly/maximum 68%), while the addition of ascorbic acid decreased the browning of the samples by 29%. For antioxidant activity, there were no significant differences between raw and processed samples during the 35 days of storage. An increase in the activity of polyphenol oxidase immediately after processing (about 150%) was confirmed, which was generally similar or higher during storage compared with the raw samples. Regarding the volatile profile of the product, it was seen that the compounds associated with melon represented the biggest relative percentage and processed samples revealed a decrease in the relative quantity of these compounds compared to unprocessed. Broadly speaking, HPP was shown to be efficient in maintaining the stability and overall quality of the product while assuring microbial safety (by inactivating purposely inoculated microorganisms), which allows for longer shelf life (7 versus 28 days for unprocessed and processed fruit salad, respectively).
Collapse
Affiliation(s)
- Ana C. Lopes
- Associated Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.L.); (C.A.P.); (I.D.)
| | - Rui P. Queirós
- Department of Applications and Food Processing, Hiperbaric S.A., Calle Condado de Treviño, 6, 09001 Burgos, Spain;
| | - Rita S. Inácio
- School of Agriculture (ESA), Polytechnique Institute of Beja, Rua Pedro Soares, 7800-295 Beja, Portugal;
| | - Carlos A. Pinto
- Associated Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.L.); (C.A.P.); (I.D.)
| | - Susana Casal
- LAQV-REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal;
| | - Ivonne Delgadillo
- Associated Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.L.); (C.A.P.); (I.D.)
| | - Jorge A. Saraiva
- Associated Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.L.); (C.A.P.); (I.D.)
| |
Collapse
|
4
|
Zheng N, Long M, Zhang Z, Du S, Huang X, Osire T, Xia X. Behavior of enzymes under high pressure in food processing: mechanisms, applications, and developments. Crit Rev Food Sci Nutr 2023; 64:9829-9843. [PMID: 37243343 DOI: 10.1080/10408398.2023.2217268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
High pressure processing (HPP) offers the benefits of safety, uniformity, energy-efficient, and low waste, which is widely applied for microbial inactivation and shelf-life extension for foods. Over the past forty years, HPP has been extensively researched in the food industry, enabling the inactivation or activation of different enzymes in future food by altering their molecular structure and active site conformation. Such activation or inactivation of enzymes effectively hinders the spoilage of food and the production of beneficial substances, which is crucial for improving food quality. This paper reviews the mechanism in which high pressure affects the stability and activity of enzymes, concludes the roles of key enzymes in the future food processed using high pressure technologies. Moreover, we discuss the application of modified enzymes based on high pressure, providing insights into the future direction of enzyme evolution under complex food processing conditions (e.g. high temperature, high pressure, high shear, and multiple elements). Finally, we conclude with prospects of high pressure technology and research directions in the future. Although HPP has shown positive effects in improving the future food quality, there is still a pressing need to develop new and effective combined processing methods, upgrade processing modes, and promote sustainable lifestyles.
Collapse
Affiliation(s)
- Nan Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Mengfei Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zehua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shuang Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xinlei Huang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Tolbert Osire
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| | - Xiaole Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Bioactive Compounds in Extracts from the Agro-Industrial Waste of Mango. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010458. [PMID: 36615647 PMCID: PMC9823791 DOI: 10.3390/molecules28010458] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Mango by-products are important sources of bioactive compounds generated by agro-industrial process. During mango processing, 35-60% of the fruit is discarded, in many cases without treatment, generating environmental problems and economic losses. These wastes are constituted by peels and seeds (tegument and kernel). The aim of this review was to describe the extraction, identification, and quantification of bioactive compounds, as well as their potential applications, published in the last ten years. The main bioactive compounds in mango by-products are polyphenols and carotenoids, among others. Polyphenols are known for their high antioxidant and antimicrobial activities. Carotenoids show provitamin A and antioxidant activity. Among the mango by-products, the kernel has been studied more than tegument and peels because of the proportion and composition. The kernel represents 45-85% of the seed. The main bioactive components reported for the kernel are gallic, caffeic, cinnamic, tannic, and chlorogenic acids; methyl and ethyl gallates; mangiferin, rutin, hesperidin, and gallotannins; and penta-O-galloyl-glucoside and rhamnetin-3-[6-2-butenoil-hexoside]. Meanwhile, gallic acid, ferulic acid, and catechin are reported for mango peel. Although most of the reports are at the laboratory level, they include potential applications in the fields of food, active packaging, oil and fat, and pharmaceutics. At the market level, two trends will stimulate the industrial production of bioactive compounds from mango by-products: the increasing demand for industrialized fruit products (that will increase the by-products) and the increase in the consumption of bioactive ingredients.
Collapse
|
6
|
Zhang S, Meenu M, Hu L, Ren J, Ramaswamy HS, Yu Y. Recent Progress in the Synergistic Bactericidal Effect of High Pressure and Temperature Processing in Fruits and Vegetables and Related Kinetics. Foods 2022; 11:foods11223698. [PMID: 36429290 PMCID: PMC9689688 DOI: 10.3390/foods11223698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Traditional thermal processing is a widely used method to ensure food safety. However, thermal processing leads to a significant decline in food quality, especially in the case of fruits and vegetables. To overcome this drawback, researchers are extensively exploring alternative non-thermal High-Pressure Processing (HPP) technology to ensure microbial safety and retaining the sensory and nutritional quality of food. However, HPP is unable to inactivate the spores of some pathogenic bacteria; thus, HPP in conjunction with moderate- and low-temperature is employed for inactivating the spores of harmful microorganisms. Scope and approach: In this paper, the inactivation effect of high-pressure and high-pressure thermal processing (HPTP) on harmful microorganisms in different food systems, along with the bactericidal kinetics model followed by HPP in certain food samples, have been reviewed. In addition, the effects of different factors such as microorganism species and growth stage, process parameters and pressurization mode, and food composition on microbial inactivation under the combined high-pressure and moderate/low-temperature treatment were discussed. KEY FINDINGS AND CONCLUSIONS The establishment of a reliable bactericidal kinetic model and accurate prediction of microbial inactivation will be helpful for industrial design, development, and optimization of safe HPP and HPTP treatment conditions.
Collapse
Affiliation(s)
- Sinan Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Maninder Meenu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lihui Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
- Hangzhou Jiangnan Talent Service Co., Ltd., 681 Qingchun East Road, Hangzhou 310000, China
| | - Junde Ren
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hosahalli S. Ramaswamy
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Road, St-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Yong Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, 866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-88982181
| |
Collapse
|
7
|
Marín-Castro UR, Salgado-Cervantes M, Pallet D, Vargas-Ortiz M, Servent A. Flash vacuum expansion: an alternative with potential for Ataulfo and Manila mango processing. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3063-3072. [PMID: 35872740 PMCID: PMC9304513 DOI: 10.1007/s13197-022-05479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/13/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Mangoes of the Manila and Ataulfo varieties are characterized by having a pleasant flavor and an attractive color of both the peel and pulp. However, due to their post-harvest physiology, they are highly perishable and very susceptible to physical damage, which greatly limits marketing these fruits. Therefore, it is necessary to evaluate technologies that preserve their organoleptic and nutritional properties. There is also an increasing demand of products that are as natural as possible where only physical processes are used in their preparation to reduce the use of chemical compounds. A technology that satisfies these demands is the flash vacuum-expansion (FVE) process. In Ataulfo mango, the FVE process increased soluble solids by approximately 9% and total phenolic content from 100.9 to 122.8 mg GAE/100 g of puree, which led to an increase in antioxidant capacity of the puree, as well as slightly improving color stability. However, further optimization of this method of processing mango is required.
Collapse
Affiliation(s)
| | | | - Dominique Pallet
- CIRAD, UMR Qualisud, 34398 Montpellier, France
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d’Avignon, Université de La Réunion, Montpellier, France
| | - Manuel Vargas-Ortiz
- CONACYT-CIAD (Centro de Investigación en Alimentación y Desarrollo), Laboratorio de Calidad, Autenticidad y Trazabilidad de los Alimentos, Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La victoria, 83304 Hermosillo, Sonora México
| | - Adrien Servent
- CIRAD, UMR Qualisud, 34398 Montpellier, France
- Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Université d’Avignon, Université de La Réunion, Montpellier, France
| |
Collapse
|
8
|
Roobab U, Abida A, Afzal R, Madni GM, Zeng X, Rahaman A, Aadil RM. Impact of high‐pressure treatments on enzyme activity of fruit‐based beverages: an overview. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ume Roobab
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 China
| | - Afeera Abida
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Rehan Afzal
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Ghulam Muhammad Madni
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 China
| | - Abdul Rahaman
- School of Food Science and Engineering South China University of Technology Guangzhou 510641 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad 38000 Pakistan
| |
Collapse
|
9
|
Zhang S, Zheng C, Zeng Y, Zheng Z, Yao X, Zhao Y, Jiang Z. Mechanism of colour change of carambola puree by high pressure processing and its effect on flavour and physicochemical properties. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sinan Zhang
- College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Chuyao Zheng
- College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Yanxia Zeng
- College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Zhenhong Zheng
- College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Xueshuang Yao
- College of Food Science South China Agricultural University Guangzhou 510642 China
| | - Yadong Zhao
- College of Materials and Energy South China Agricultural University Guangzhou 510642 China
| | - Zhuo Jiang
- College of Food Science South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
10
|
Using High Hydrostatic Pressure Processing Come-Up Time as an Innovative Tool to Induce the Biosynthesis of Free and Bound Phenolics in Whole Carrots. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02512-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Effect of Applied Voltage on the Aggregation and Conformational Changes in Peroxidase Under Electrospray. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02390-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Ozone-high hydrostatic pressure synergy for the stabilization of refrigerated pitaya (Stenocereus pruinosus) juice. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Zhang W, Dong P, Lao F, Liu J, Liao X, Wu J. Characterization of the major aroma-active compounds in Keitt mango juice: Comparison among fresh, pasteurization and high hydrostatic pressure processing juices. Food Chem 2019; 289:215-222. [DOI: 10.1016/j.foodchem.2019.03.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 12/29/2022]
|
14
|
Sreedevi P, Jayachandran LE, Rao PS. Kinetic modeling of high-pressure induced inactivation of polyphenol oxidase in sugarcane juice (Saccharum officinarum). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2365-2374. [PMID: 30353562 DOI: 10.1002/jsfa.9443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/01/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Polyphenol oxidase (PPO) is the main enzyme in sugarcane juice associated with rapid browning and degradation of organoleptic properties. High-pressure processing (HPP) (300-600 MPa) of sugarcane juice in combination with moderate temperatures (30-60 °C) for different processing times (10-25 min) has shown promising results in minimizing PPO activity while preserving the juice's freshness. RESULTS A maximum PPO inactivation of 98% was achieved at 600 MPa/60 °C/25 min, while the corresponding value for thermal treatment at 0.1 MPa/60 °C was only 66%. The nonlinearity in the inactivation data was well described by the Weibull distribution model with a high adjusted R2 and reduced χ2 values at all levels of pressure and temperature. The PPO inactivation data were fitted at shape parameter, β = 1 (log linear) and β ≠ 1. A refitted Weibull model was used to predict kinetic parameters such as the inactivation rate constants (k), activation energy (Ea ) and activation volume (Va ), which govern PPO inactivation in HPP-treated sugarcane juice. A secondary kinetic model was formulated to predict the k values as a function of pressure (P) and temperature (T), incorporating Ea and Va . CONCLUSIONS Combined high-pressure and temperature processing has been considered a reliable alternative to conventional heat treatment for inhibiting PPO activity in sugarcane juice. While the isothermal inactivation of PPO followed first-order kinetics, inclusion of high pressure resulted in a strong deviation from log linear kinetics. Identification of suitable kinetic models describing these inactivation processes is expected to aid product development and process control of high-pressure processed sugarcane juice. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pandraju Sreedevi
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, India
| | - Lakshmi E Jayachandran
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, India
| | - Pavuluri Srinivasa Rao
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|