1
|
Wang L, Lin Z, Peng C, Zhang H, Zhang L, Zheng S, Chen J. Roles of ROS in physiological, microbial and metabolomic alterations of fresh-cut sugarcane under red and blue light irradiation. Food Chem X 2025; 26:102344. [PMID: 40123872 PMCID: PMC11930200 DOI: 10.1016/j.fochx.2025.102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
Effects of red and blue light treatment on physiological quality, microbial loads, redox status and metabolomics profiles of fresh-cut sugarcane in vacuum and plastic packages were investigated during 15 d storage. The results showed that light synergistic vacuum treatment delayed the decrease of pH and the increase of respiration rate and microbial loads, enhanced antioxidant capacities and related enzymes activities. Light treatment was beneficial to 1O2 generation, but had opposite effects on O2 -, H2O2 and malondialdehyde. O2- and H2O2 was negatively associated with CAT, sucrose, fructose, glucose, 2-oxoglutaramate, liquiritigenin and dihydromyricetin, positively with PPO and malondialdehyde. Only phenylacetaldehyde exhibited a negative correlation with 1O2. The biosynthesis of sugars, amino acids and flavonoids were the principal metabolite pathways corresponding to oxidative stress in fresh-cut sugarcane. It could be concluded that the concentration of ROS, especially O2- and H2O2, should be appropriate to kill bacteria and retain the quality of fresh-cut sugarcane.
Collapse
Affiliation(s)
- Lu Wang
- National Engineering Research Center of Sugarcane, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhengrong Lin
- National Engineering Research Center of Sugarcane, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng Peng
- National Engineering Research Center of Sugarcane, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hua Zhang
- National Engineering Research Center of Sugarcane, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lulu Zhang
- National Engineering Research Center of Sugarcane, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shoujing Zheng
- Jinshan College of Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiebo Chen
- National Engineering Research Center of Sugarcane, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Xie J, He C, Li Z, Li M, He S, Qian J, Tan B, Zheng X, Cheng J, Wang W, Li J, Feng J, Ye X. A rapid and efficient Agrobacterium-mediated transient transformation system in grape berries. PROTOPLASMA 2024; 261:819-830. [PMID: 38418654 DOI: 10.1007/s00709-024-01938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Transient transformation is extremely useful for rapid in vivo assessment of gene function, especially for fruit-related genes. Grape berry, while an important fruit crop, is recalcitrant to transient transformation, due to the high turgor pressure in its mesocarp cells that limits the ability of Agrobacterium to penetrate into the tissue. It is urgent to establish a simple transient transformation system for rapid analysis of gene function. In this study, different injection methods, grape genotypes, and developmental stages were tested in order to develop a rapid and efficient Agrobacterium-mediated transient transformation methodology for grape berries. Two injection methods, namely punch injection and direct injection, were evaluated using the β-glucuronidase (GUS) gene and by x-gluc tissue staining and 4-methylumbelliferyl-β-D-glucuronide fluorescence analysis. The results indicated that there were no significant differences on transformation effects between the two methods, but the latter was more suitable because of its simplicity and convenience. Six grape cultivars ('Hanxiangmi', 'Moldova', 'Zijixin', 'Jumeigui', 'Shine-Muscat', and 'A17') were tested for transient transformation. 'Hanxiangmi', 'Moldova', and 'Zijixin' grape berries were not suitable for agroinfiltration due to frequently fruit cracking, browning, and formation of scar skin. The fruit integrity rates of 'Jumeigui', 'Shine-Muscat', and 'A17' berries were all above 80%, and GUS activity was detected in the berries of the three cultivars 3-14 days after injection with the Agrobacterium culture, while higher GUS activities were observed in the 'Jumeigui' berries. The levels of GUS activity in injected berries at 7-8 weeks after full blooming (WAFB) were more than twice at 6 WAFB. In subsequent assays, the over-expression of MYB transcription factor VvMYB44 via transient transformation accelerated the anthocyanin accumulation and fruit coloring through raising the expression levels of VvLAR1, VvUFGT, VvLDOX, VvANS, and VvDFR, which verified the effectiveness of this transformation system. These experiments finally identified the reliable grape cultivars and suitable operational approach for transient transformation and further indicated that this Agrobacterium-mediated transient transformation system was efficient and suitable for the elucidation of gene function in grape berries.
Collapse
Affiliation(s)
- Jiannan Xie
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Chang He
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Henan Horticultural Crop Biology, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Zhiqian Li
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Henan Horticultural Crop Biology, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Meng Li
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Shanshan He
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Jiakang Qian
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Henan Horticultural Crop Biology, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Henan Horticultural Crop Biology, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Henan Horticultural Crop Biology, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Henan Horticultural Crop Biology, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Jidong Li
- College of Forestry, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China.
- International Joint Laboratory of Henan Horticultural Crop Biology, Henan Province, Zhengzhou, 450002, People's Republic of China.
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China.
- International Joint Laboratory of Henan Horticultural Crop Biology, Henan Province, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
3
|
Zou F, Shinali TS, Yang M, Zhong Y, Wu J, Wang L, Wang H. Incorporation of ascorbic acid in chitosan-based coating combined with plasma-activated water: A technology for quality preservation of red grapes after simulated transportation. Int J Biol Macromol 2024; 270:132366. [PMID: 38759852 DOI: 10.1016/j.ijbiomac.2024.132366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Red grapes possess multiple bioactivities but are highly susceptible to spoilage due to the lack of efficient preservation techniques. Plasma-activated water (PAW) treatment and the incorporation of antioxidants in bio-based coatings are promising methods for preserving produce. In this study, we tested a novel combination by incorporating ascorbic acid (AA) into a chitosan-based edible coating (CH) and combining it with plasma-activated water (PAW) treatment (CA-PAW) before simulating transport vibrations to extend the shelf-life of red grapes. The results from storage at 4 °C for 20 d indicated that the CA-PAW treatment reduced microbial counts by 2.62 log10 CFU/g for bacteria, 1.72 log10 CFU/g for yeasts and molds, and 1.1 log10 CFU/g for coliforms, in comparison to the control group treated with sterile deionized water. Total phenols and total flavonoid content were the highest observed, at 111.2 mg GAE/100 g and 262.67 mg RE/100 g, respectively. This treatment also inhibited water migration and erosion, and reduced damage to cell structure. Microstructural observations revealed that the CH coating on the surface of red grapes diminished the degradation of bioactive components. In conclusion, the CA-PAW treatment effectively inhibited the adverse physiological changes caused by vibration and mechanical damage to red grapes, maintained their nutritional and sensory qualities, and extended the shelf life by at least 8 d.
Collapse
Affiliation(s)
- Fanglei Zou
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Tharushi S Shinali
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Miao Yang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yuanliang Zhong
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Junhua Wu
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Liangju Wang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hongying Wang
- College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
4
|
Aftab A, Ali M, Yousaf Z, Binjawhar DN, Hyder S, Aftab Z, Maqbool Z, Shahzadi Z, Eldin SM, Iqbal R, Ali I. Shelf-life extension of Fragaria × ananassa Duch. using selenium nanoparticles synthesized from Cassia fistula Linn. leaves. Food Sci Nutr 2023; 11:3464-3484. [PMID: 37324842 PMCID: PMC10261745 DOI: 10.1002/fsn3.3336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/17/2023] Open
Abstract
Fragaria × ananassa Duch. (Strawberry) fruit is susceptible to postharvest diseases, thus decrease in quality attributes, such as physiological and biochemical properties leads to decrease in shelf life. The objective of the present study was to check the effect of Selenium NP's and packaging conditions on the shelf life of strawberry (Fragaria × ananassa Duch) fruits. The shelf life was observed with 4 days intervals and examined for characteristics such as physiological weight loss, moisture content, percentage decay loss, peroxidase, catalase, and DPPH radical scavenging. The quality change of postharvest Fragaria × ananassa Duch. was monitored by the application of selenium nanoparticles (T1 plant extract in 10 mM salt solution, T2 plant extract in 30 mM salt solution, T3 plant extract in 40 mM salt solution, T4 distilled water; control) in different packaging materials (plastic bags, cardboard, and brown paper) at different storage conditions (6°C and 25°C). 10 mM, 20 mM, and 30 mM solution of sodium selenite salt, prepared from 1 M stock solution. Selenium nanoparticles were synthesized using Cassia fistula L. extract and sodium selenite salt solution. Polyvinyl alcohol (PVA) was used as a stabilizer. The nanoparticles were characterized through UV-visible spectroscopy and X-Ray diffractometer (XRD). It was observed that the strawberry Fragaria × ananassa Duch. Treated with T1 (CFE and 10 mM salt solution) stored in plastic packaging at ±6°C showed the best physiological parameters and hence the treatment is recommended for storage without affecting the quality of strawberry fruit up to 16 days.
Collapse
Affiliation(s)
- Arusa Aftab
- Department of BotanyLahore College for Women UniversityLahorePakistan
| | - Maira Ali
- Department of BotanyLahore College for Women UniversityLahorePakistan
| | - Zubaida Yousaf
- Department of BotanyLahore College for Women UniversityLahorePakistan
| | - Dalal Nasser Binjawhar
- Department of Chemistry, College of SciencePrincess Nourah Bint Abdulrahman UniversityRiyadhSaudi Arabia
| | - Sajjad Hyder
- Department of BotanyGovernment College Women University SialkotSialkotPakistan
| | - Zill‐e‐Huma Aftab
- Department of Plant Pathology, Institute of Agricultural SciencesUniversity of the PunjabLahorePakistan
| | - Zainab Maqbool
- Department of BotanyLahore College for Women UniversityLahorePakistan
| | - Zainab Shahzadi
- Department of BotanyLahore College for Women UniversityLahorePakistan
| | - Sayed M. Eldin
- Center of Research, Faculty of EngineeringFuture University in EgyptNew CairoEgypt
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and EnvironmentThe Islamia University of Bahawalpur PakistanBahawalpurPakistan
| | - Iftikhar Ali
- Center for Plant Sciences and BiodiversityUniversity of SwatCharbaghPakistan
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkUnited States
| |
Collapse
|
6
|
Red Light Resets the Expression Pattern, Phase, and Period of the Circadian Clock in Plants: A Computational Approach. BIOLOGY 2022; 11:biology11101479. [PMID: 36290383 PMCID: PMC9598827 DOI: 10.3390/biology11101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Simple Summary Progress in computational biology has provided a comprehensive understanding of the dynamics of the plant circadian clock. Previously proposed models of the plant circadian clock have intended to model its entrainment using white-light/dark cycles. However, these models have failed to take into account the effect of light quality on circadian rhythms, which has been experimentally observed. In this work, we developed a computational approach to characterizing the effects of light quality on plant circadian rhythms. The results demonstrated that red light can reset the expression patterns, phases, and periods of clock component genes. The circadian period, amplitude, and phase can be co-optimized for high-quality and efficient breeding. Abstract Recent research in the fields of biochemistry and molecular biology has shown that different light qualities have extremely different effects on plant development, and optimizing light quality conditions can speed up plant growth. Clock-regulated red-light signaling, can enhance hypocotyl elongation, and increase seedling height and flower and fruit productivity. In order to investigate the effect of red light on circadian clocks in plants, a novel computational model was established. The expression profiles of the circadian element CCA1 from previous related studies were used to fit the model. The simulation results were validated by the expression patterns of CCA1 in Arabidopsis, including wild types and mutants, and by the phase shifts of CCA1 after red-light pulse. The model was used to further explore the complex responses to various photoperiods, such as the natural white-light/dark cycles, red/white/dark cycles, and extreme 24 h photoperiods. These results demonstrated that red light can reset the expression pattern, period, and phase of the circadian clock. Finally, we identified the dependence of phase shifts on the length of red-light pulse and the minimum red-light pulse length required for producing an observable phase shift. This work provides a promising computational approach to investigating the response of the circadian clock to other light qualities.
Collapse
|