1
|
Housmans BAC, Neefjes M, Surtel DAM, Vitík M, Cremers A, van Rhijn LW, van der Kraan PM, van den Akker GGH, Welting TJM. Synovial fluid from end-stage osteoarthritis induces proliferation and fibrosis of articular chondrocytes via MAPK and RhoGTPase signaling. Osteoarthritis Cartilage 2022; 30:862-874. [PMID: 35176481 DOI: 10.1016/j.joca.2021.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Alterations in the composition of synovial fluid have been associated with adverse effects on cartilage integrity and function. Here, we examined the phenotypic and proliferative behavior of human articular chondrocytes when cultured in vitro for 13 days with synovial fluid derived from end-stage osteoarthritis patients. MATERIALS AND METHODS Chondrocyte proliferation and phenotypical changes induced by osteoarthritic synovial fluid were analyzed using DNA staining, RT-qPCR, immunostainings, and immunoblotting. The molecular mechanisms by which osteoarthritic synovial fluid induced fibrosis and proliferation were studied using a phospho-protein antibody array and luciferase-based transcription factor activity assays. Specific pathway inhibitors were used to probe the involvement of pathways in fibrosis and proliferation. RESULTS Prolonged stimulation with osteoarthritic synovial fluid sustained chondrocyte proliferation and induced profound phenotypic changes, favoring a fibrotic over a chondrogenic or hypertrophic phenotype. A clear loss of chondrogenic markers at both the transcriptional and protein level was observed, while expression of several fibrosis-associated markers were upregulated over time. Phospho-kinase analysis revealed activation of MAPK and RhoGTPase signaling pathways by osteoarthritic synovial fluid, which was confirmed by elevated transcriptional activity of Elk-1 and SRF. Inhibitor studies revealed that ERK played a central role in the loss of chondrocyte phenotype, while EGFR and downstream mediators p38, JNK and Rac/Cdc42 were essential for fibrosis-associated collagen expression. Finally, we identified EGF signaling as a key activator of chondrocyte proliferation. CONCLUSIONS Osteoarthritic synovial fluid promoted chondrocyte fibrosis and proliferation through EGF receptor activation and downstream MAPK and RhoGTPase signaling.
Collapse
Affiliation(s)
- B A C Housmans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - M Neefjes
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - D A M Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - M Vitík
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - A Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - L W van Rhijn
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - P M van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - G G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands
| | - T J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, the Netherlands; Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Kang HJ, Park JS, Ryu KN, Rhee YG, Jin W, Park SY. Assessment of postoperative acromial and subacromial morphology after arthroscopic acromioplasty using magnetic resonance imaging. Skeletal Radiol 2021; 50:761-770. [PMID: 32978678 DOI: 10.1007/s00256-020-03607-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To identify the morphological characteristics of the acromion and subacromial bursal space after arthroscopic acromioplasty using magnetic resonance imaging (MRI). MATERIALS AND METHODS One hundred patients who received arthroscopic rotator cuff repair and acromioplasty each received at least three MRI examinations (preoperative, first immediate postoperative, and second follow-up imaging between 8 months and 1 year postoperatively). Changes over time in the thickness and morphology of the postoperative acromion as well as the subacromial bursal space were assessed. Clinical and radiological parameters were also analyzed to identify any association with changes in acromial morphology. RESULTS Despite minimal acromial thinning observed at the first immediate postoperative state, the acromions showed significant thinning at the second postoperative MRI, with a mean reduction of 32%. Along with acromial thinning, an exaggerated concave contour of the acromial undersurface was observed in some patients. In the subacromial space, a loculated fluid collection developed in 91% of the patients at the second postoperative follow-up. No statistically significant association was noted between postoperative acromial thickness change and clinical or radiological factors (P value > 0.05). CONCLUSION A significant delayed reduction in acromial thickness within approximately 1 year of arthroscopic acromioplasty is thought to be a normal postoperative feature. The simultaneous collection of a loculated, cyst-like fluid in the subacromial bursal space may be an important associated factor of postoperative acromial thinning.
Collapse
Affiliation(s)
- Hye Jin Kang
- Department of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-872, Republic of Korea
| | - Ji Seon Park
- Department of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-872, Republic of Korea.
| | - Kyung Nam Ryu
- Department of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, 23 Kyungheedae-ro, Dongdaemun-gu, Seoul, 130-872, Republic of Korea
| | - Yong Girl Rhee
- Department of Orthopedic Surgery, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Wook Jin
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - So Young Park
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
3
|
The effects of TNF-alpha inhibition on cartilage: a systematic review of preclinical studies. Osteoarthritis Cartilage 2020; 28:708-718. [PMID: 31634583 DOI: 10.1016/j.joca.2019.09.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/14/2019] [Accepted: 09/28/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To report the most up-to-date evidence on the effects of tumour necrosis factor (TNF)-alpha inhibition on cartilage with a focus on its clinical relevance. DESIGN A systematic review was performed by searching PubMed, Embase and Cochrane Library databases. Inclusion criteria were studies of any level of evidence published in peer-reviewed journals reporting clinical or preclinical results written in English. Relative data were extracted and critically analysed. PRISMA guidelines were applied, and risk of bias was assessed as well as the methodological quality of the included studies. RESULTS 13 studies were included after applying the inclusion and exclusion criteria. Three were in vitro human studies from osteoarthritis (OA) patients. Ten were animal modal studies including two in vitro studies, and eight in vivo studies. TNF-alpha inhibition in in vitro studies was generally reported beneficial due to the improved osteochondral viability, proliferation and chondrogenesis. In addition, TNF-alpha inhibition was noted to be beneficial in promoting the natural repair of osteochondral lesions and has a chondroprotective effect in in vivo studies. CONCLUSION Based on current evidence, TNF might have the potential to interfere with the healing process of chondral and osteochondral defects occurring naturally or in low inflammatory environment after a cartilage repair procedure. Therefore, the use of biological agents to inhibit its action in cartilage repair surgery could be beneficial, and this could translate into a promising therapy that improves the outcome of currently available cartilage procedures.
Collapse
|
4
|
Williams RJ. Editorial Commentary: Are We Really Ready to Talk About Sports After Osteochondral Allograft Transplantation? Arthroscopy 2019; 35:1890-1892. [PMID: 31159971 DOI: 10.1016/j.arthro.2019.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 02/02/2023]
Abstract
When it comes to return to high-level sports participation, articular cartilage surgical treatment outcomes were historically abysmal, whereas osteochondral allografts have allowed return to sport at rates as high as 88%. However, although osteochondral allograft transplantation effectively reconstructs the damaged articular surface in affected knees, the grafts themselves do nothing to re-establish normal joint homeostasis, resulting in high reoperation rates. Return to sport should require recovery of nearly normal motion and strength, as well as magnetic resonance imaging showing intact cartilage, bony incorporation, and no effusion. These milestones typically occur at 6 months. Persistent joint inflammation and reactivity remain a vexing issue, and long-term durability is of significant concern. In the future, a goal could be to develop biological therapies that could modulate the joint inflammation and catabolism associated with articular cartilage injury.
Collapse
|
5
|
Sauerschnig M, Berninger MT, Kaltenhauser T, Plecko M, Wexel G, Schönfelder M, Wienerroither V, Imhoff AB, Schöttle PB, Rosado Balmayor E, Salzmann GM. Chondrocyte Culture Parameters for Matrix-Assisted Autologous Chondrocyte Implantation Affect Catabolism and Inflammation in a Rabbit Model. Int J Mol Sci 2019; 20:ijms20071545. [PMID: 30934789 PMCID: PMC6479589 DOI: 10.3390/ijms20071545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 11/16/2022] Open
Abstract
Cartilage defects represent an increasing pathology among active individuals that affects the ability to contribute to sports and daily life. Cell therapy, such as autologous chondrocyte implantation (ACI), is a widespread option to treat larger cartilage defects still lacking standardization of in vitro cell culture parameters. We hypothesize that mRNA expression of cytokines and proteases before and after ACI is influenced by in vitro parameters: cell-passage, cell-density and membrane-holding time. Knee joint articular chondrocytes, harvested from rabbits (n = 60), were cultured/processed under varying conditions: after three different cell-passages (P1, P3, and P5), cells were seeded on 3D collagen matrices (approximately 25 mm³) at three different densities (2 × 10⁵/matrix, 1 × 10⁶/matrix, and 3 × 10⁶/matrix) combined with two different membrane-holding times (5 h and two weeks) prior autologous transplantation. Those combinations resulted in 18 different in vivo experimental groups. Two defects/knee/animal were created in the trochlear groove (defect dimension: ∅ 4 mm × 2 mm). Four identical cell-seeded matrices (CSM) were assembled and grouped in two pairs: One pair giving pre-operative in vitro data (CSM-i), the other pair was implanted in vivo and harvested 12 weeks post-implantation (CSM-e). CSMs were analyzed for TNF-α, IL-1β, MMP-1, and MMP-3 via qPCR. CSM-i showed higher expression of IL-1β, MMP-1, and MMP-3 compared to CSM-e. TNF-α expression was higher in CSM-e. Linearity between CSM-i and CSM-e values was found, except for TNF-α. IL-1β expression was higher in CSM-i at higher passage and longer membrane-holding time. IL-1β expression decreased with prolonged membrane-holding time in CSM-e. For TNF-α, the reverse was true. Lower cell-passages and lower membrane-holding time resulted in stronger TNF-α expression. Prolonged membrane-holding time resulted in increased MMP levels among CSM-i and CSM-e. Cellular density was of no significant effect. We demonstrated cytokine and MMP expression levels to be directly influenced by in vitro culture settings in ACI. Linearity of expression-patterns between CSM-i and CSM-e may predict ACI regeneration outcome in vivo. Cytokine/protease interaction within the regenerate tissue could be guided via adjusting in vitro culture parameters, of which membrane-holding time resulted the most relevant one.
Collapse
Affiliation(s)
- Martin Sauerschnig
- Department of Orthopedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich 81675, Germany.
- Trauma Hospital Graz, Unfallkrankenhaus der Allgemeinen Unfallversicherungsanstalt (AUVA), Teaching Hospital Medical University Graz, Graz 8010, Austria.
| | - Markus T Berninger
- Department of Orthopedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich 81675, Germany.
- Department of Trauma Surgery, Trauma Center (BGU) Murnau, Murnau 82418, Germany.
| | - Theresa Kaltenhauser
- Department of Orthopedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich 81675, Germany.
| | - Michael Plecko
- Trauma Hospital Graz, Unfallkrankenhaus der Allgemeinen Unfallversicherungsanstalt (AUVA), Teaching Hospital Medical University Graz, Graz 8010, Austria.
| | - Gabriele Wexel
- Department of Orthopedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich 81675, Germany.
| | - Martin Schönfelder
- Exercise Biology, Technical University of Munich, 80809 Munich, Germany.
| | - Valerie Wienerroither
- Trauma Hospital Graz, Unfallkrankenhaus der Allgemeinen Unfallversicherungsanstalt (AUVA), Teaching Hospital Medical University Graz, Graz 8010, Austria.
- Department of General Surgery, Medical University of Graz, Graz 8036, Austria.
| | - Andreas B Imhoff
- Department of Orthopedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich 81675, Germany.
| | - Philip B Schöttle
- Department of Orthopedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich 81675, Germany.
| | - Elizabeth Rosado Balmayor
- Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich 81675, Germany.
| | - Gian M Salzmann
- Department of Orthopedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich 81675, Germany.
- Gelenkzentrum Rhein-Main, Wiesbaden 65183, Germany.
- Musculoskeletal Centre, Schulthess Klinik Zurich, Zurich 8008, Switzerland.
| |
Collapse
|
6
|
Islam A, Fossum V, Hansen AK, Urbarova I, Knutsen G, Martinez-Zubiaurre I. In vitro chondrogenic potency of surplus chondrocytes from autologous transplantation procedures does not predict short-term clinical outcomes. BMC Musculoskelet Disord 2019; 20:19. [PMID: 30630436 PMCID: PMC6329094 DOI: 10.1186/s12891-018-2380-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/12/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Autologous chondrocyte implantation (ACI) has been used over the last two decades to treat focal cartilage lesions aiming to delay or prevent the onset of osteoarthritis; however, some patients do not respond adequately to the procedure. A number of biomarkers that can forecast the clinical potency of the cells have been proposed, but evidence for the relationship between in vitro chondrogenic potential and clinical outcomes is missing. In this study, we explored if the ability of cells to make cartilage in vitro correlates with ACI clinical outcomes. Additionally, we evaluated previously proposed chondrogenic biomarkers and searched for new biomarkers in the chondrocyte proteome capable of predicting clinical success or failure after ACI. METHODS The chondrogenic capacity of chondrocytes derived from 14 different donors was defined based on proteoglycans staining and visual histological grading of tissues generated using the pellet culture system. A Lysholm score of 65 two years post-ACI was used as a cut-off to categorise "success" and "failure" clinical groups. A set of predefined biomarkers were investigated in the chondrogenic and clinical outcomes groups using flow cytometry and qPCR. High-throughput proteomics of cell lysates was used to search for putative biomarkers to predict chondrogenesis and clinical outcomes. RESULTS Visual histological grading of pellets categorised donors into "high" and "low" chondrogenic groups. Direct comparison between donor-matched in vitro chondrogenic potential and clinical outcomes revealed no significant associations. Comparative analyses of selected biomarkers revealed that expression of CD106 and TGF-β-receptor-3 was enhanced in the low chondrogenic group, while expression of integrin-α1 and integrin-β1 was significantly upregulated in the high chondrogenic group. Additionally, increased surface expression of CD166 was observed in the clinical success group, while the gene expression of cartilage oligomeric matrix protein was downregulated. High throughput proteomics revealed no differentially expressed proteins from success and failure clinical groups, whereas seven proteins including prolyl-4-hydroxylase 1 were differentially expressed when comparing chondrogenic groups. CONCLUSION In our limited material, we found no correlation between in vitro cartilage-forming capacity and clinical outcomes, and argue on the limitations of using the chondrogenic potential of cells or markers for chondrogenesis as predictors of clinical outcomes.
Collapse
Affiliation(s)
- Ashraful Islam
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Vegard Fossum
- Department of Orthopaedic Surgery, University Hospital of Northern Norway, Tromsø, Norway
| | - Ann Kristin Hansen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Orthopaedic Surgery, University Hospital of Northern Norway, Tromsø, Norway
| | - Ilona Urbarova
- Department of Medical Biology, Tromsø University Proteomics Platform, UiT The Arctic University of Norway, Tromsø, Norway
| | - Gunnar Knutsen
- Department of Orthopaedic Surgery, University Hospital of Northern Norway, Tromsø, Norway
| | | |
Collapse
|
7
|
Ossendorff R, Grad S, Stoddart MJ, Alini M, Schmal H, Südkamp N, Salzmann GM. Autologous Chondrocyte Implantation in Osteoarthritic Surroundings: TNFα and Its Inhibition by Adalimumab in a Knee-Specific Bioreactor. Am J Sports Med 2018; 46:431-440. [PMID: 29100004 DOI: 10.1177/0363546517737497] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Autologous chondrocyte implantation (ACI) fails in up to 20% of cases. Advanced intra-articular degeneration paired with an inflammatory environment may be closely related to implantation failure. Certain cytokines have been identified to play a major role during early osteoarthritis. PURPOSE To investigate the effects of tumor necrosis factor α (TNFα) and its potential inhibition by adalimumab on cartilage regeneration in an in vitro model of ACI. STUDY DESIGN Controlled laboratory study. METHODS Bovine articular chondrocytes were cultivated and transferred at passage 3 to fibrin-polyurethane scaffolds. Constructs were loaded by compression (10%-20% scaffold height) and shear (±25°) in a fully characterized multiaxial load (L) bioreactor to simulate clinical ACI or were subjected to free swelling (FS) conditions for a duration of 2 weeks. TNFα (20 ng/mL), adalimumab (10 µg/mL), or both were added to the medium. To assess the outcome, DNA, GAG (glycosaminoglycan), and total collagen were quantified, and gene expression of anabolic (collagen 2, aggrecan, cartilage oligomeric protein, proteoglycan 4), catabolic (matrix metalloproteinases [MMP] 3 and 13), dedifferentiation (collagen 1), and hypertrophy (collagen 10) markers and proinflammatory cytokines (TNFα, IL-1β) was analyzed. Histological evaluation was performed with safranin O/fast green, toluidine blue, and immunohistochemistry of collagen 1 and 2. Apoptosis was analyzed by immunolabeling of anti-active caspase 3. For statistical evaluation, nonparametric tests were chosen with a significance level of P < .05. RESULTS A general downregulation of anabolic and upregulation of catabolic markers was detected in the TNFα groups. Collagen 2 was suppressed by TNFα (FS, P = .029; L, P = .006), while MMP 3 was significantly upregulated (FS, P = .035; L, P = .001). Dynamic loading induced a chondrogenic response, which could not fully antagonize the effect of the cytokine. Adalimumab antagonized all effects of TNFα. The histological and immunohistochemical assessments demonstrated less matrix formation in the cytokine-only groups. TNFα induced apoptosis, and this effect was increased by loading. CONCLUSION TNFα does negatively affect chondrogenesis under simulated ACI conditions. Both dynamic load and, more potentially, adalimumab showed the capability of antagonizing the negative effects. CLINICAL RELEVANCE Catabolic cytokine suppression (ie, TNFα inhibition) combined with compression and shear load may best meet the conditions for chondrogenesis in an osteoarthritic environment.
Collapse
Affiliation(s)
- Robert Ossendorff
- Department of Orthopaedic and Trauma Surgery, University Medical Center, Albert-Ludwigs University Freiburg, Freiburg, Germany.,AO Research Institute Davos, Davos, Switzerland
| | | | - Martin J Stoddart
- Department of Orthopaedic and Trauma Surgery, University Medical Center, Albert-Ludwigs University Freiburg, Freiburg, Germany.,AO Research Institute Davos, Davos, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | - Hagen Schmal
- Department of Orthopaedic and Trauma Surgery, University Medical Center, Albert-Ludwigs University Freiburg, Freiburg, Germany.,Department of Orthopaedics and Traumatology and Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Norbert Südkamp
- Department of Orthopaedic and Trauma Surgery, University Medical Center, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Gian M Salzmann
- Department of Orthopaedic and Trauma Surgery, University Medical Center, Albert-Ludwigs University Freiburg, Freiburg, Germany.,Schulthess Clinic, Zürich, Switzerland.,Gelenkzentrum Rhein-Main, Wiesbaden, Germany
| |
Collapse
|
8
|
Wei FY, Lee JK, Wei L, Qu F, Zhang JZ. Correlation of insulin-like growth factor 1 and osteoarthritic cartilage degradation: a spontaneous osteoarthritis in guinea-pig. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2017; 21:4493-4500. [PMID: 29131268 PMCID: PMC6100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
OBJECTIVE The pathogenesis of osteoarthritis centers on the imbalance between catabolic and anabolic processes in cartilage metabolism. Insulin growth factor 1 (IGF-1) has been shown to have anabolic effects in cartilage in vitro. This study aim to determine whether IGF-1 on cartilage is associated with loss of chondrocyte and extracellular matrix breakdown using the Hartley guinea pig model. MATERIALS AND METHODS Cartilage from the medial and lateral tibial plateau of 6-month and 12-month old Hartley guinea pigs were used for this study. Histological analysis was performed with hematoxylin-eosin (HE) and toluidine blue staining. Safranin-O staining was used to quantify proteoglycan (PG) loss and the extent of cartilage damage by Modified Mankin score. Distribution of IGF-1 was demonstrated with in situ hybridization techniques. IGF-1 mRNA levels were assessed using Real-time PCR. RESULTS Histological loss of chondrocytes, and cartilage matrix and decreased IGF-1 distribution were demonstrated in a temporal and spatial manner. Compared to the 6-month old samples, the 12-month specimens had significantly cartilage degeneration and less cartilage matrix and PGs staining. Decreased level of IGF-1 was also observed in the 12-month samples. These observations were more pronounced in the medial tibial plateau when compared to the lateral plateau. CONCLUSIONS The decreased level of IGF-1 may play a critical role for maintaining the balance between catabolic and anabolic processes in cartilage metabolism during the development of osteoarthritis. Thus, the increase of IGF-1 may be applicable to developing OA therapy.
Collapse
Affiliation(s)
- F-Y Wei
- Department of Orthopedics, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | | | | | | | | |
Collapse
|
9
|
Wright KT, Kuiper JH, Richardson JB, Gallacher P, Roberts S. The Absence of Detectable ADAMTS-4 (Aggrecanase-1) Activity in Synovial Fluid Is a Predictive Indicator of Autologous Chondrocyte Implantation Success. Am J Sports Med 2017; 45:1806-1814. [PMID: 28277753 DOI: 10.1177/0363546517694027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Autologous chondrocyte implantation (ACI) is used worldwide in the treatment of cartilage defects in the knee. Several demographic and injury-specific risk factors have been identified that can affect the success of ACI treatment. However, the discovery of predictive biomarkers in this field has thus far been overlooked. PURPOSE To identify potential biomarkers in synovial fluid and plasma that can be used in the preoperative setting to help optimize patient selection for cell-based cartilage repair strategies. STUDY DESIGN Controlled laboratory study. METHODS Fifty-four ACI-treated patients were included. Cartilage oligomeric matrix protein (COMP), hyaluronan, soluble CD14 levels, and aggrecanase-1 (ADAMTS-4) activity in synovial fluid and COMP and hyaluronan in plasma were measured. Baseline and postoperative functional outcomes were determined using the patient-reported Lysholm score. To find predictors of postoperative function, linear and logistic regression analyses were performed. The dependent variables were the baseline and postoperative Lysholm score; the independent variables were patient age and body mass index, defect location, defect area, having a bone-on-bone defect, type of defect patch (periosteum or collagen), requirement of an extra procedure, and baseline biomarker levels. RESULTS The mean baseline Lysholm score was 47.4 ± 17.0, which improved to 64.6 ± 21.7 postoperatively. The activity of ADAMTS-4 in synovial fluid was identified as an independent predictor of the postoperative Lysholm score. Indeed, simply the presence or absence of ADAMTS-4 activity in synovial fluid appeared to be the most important predictive factor. As determined by contingency analysis, when ADAMTS-4 activity was detectable, the odds of being a responder were 3 times smaller than when ADAMTS-4 activity was not detectable. Other predictive factors were the baseline Lysholm score, age at ACI, and defect patch type used. CONCLUSION The absence of ADAMTS-4 activity in the synovial fluid of joints with cartilage defects may be used in conjunction with known demographic risk factors in the development of an ACI treatment algorithm to help inform the preclinical decision.
Collapse
Affiliation(s)
- Karina Therese Wright
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK.,Institute for Science and Technology in Medicine, Keele University, Keele, UK
| | - Jan Herman Kuiper
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK.,Institute for Science and Technology in Medicine, Keele University, Keele, UK
| | - James Bruce Richardson
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK.,Institute for Science and Technology in Medicine, Keele University, Keele, UK
| | - Pete Gallacher
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Sally Roberts
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK.,Institute for Science and Technology in Medicine, Keele University, Keele, UK
| |
Collapse
|
10
|
Hulme CH, Wilson EL, Peffers MJ, Roberts S, Simpson DM, Richardson JB, Gallacher P, Wright KT. Autologous chondrocyte implantation-derived synovial fluids display distinct responder and non-responder proteomic profiles. Arthritis Res Ther 2017; 19:150. [PMID: 28666451 PMCID: PMC5493128 DOI: 10.1186/s13075-017-1336-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/15/2017] [Indexed: 02/07/2023] Open
Abstract
Background Autologous chondrocyte implantation (ACI) can be used in the treatment of focal cartilage injuries to prevent the onset of osteoarthritis (OA). However, we are yet to understand fully why some individuals do not respond well to this intervention. Identification of a reliable and accurate biomarker panel that can predict which patients are likely to respond well to ACI is needed in order to assign the patient to the most appropriate therapy. This study aimed to compare the baseline and mid-treatment proteomic profiles of synovial fluids (SFs) obtained from responders and non-responders to ACI. Methods SFs were derived from 14 ACI responders (mean Lysholm improvement of 33 (17–54)) and 13 non-responders (mean Lysholm decrease of 14 (4–46)) at the two stages of surgery (cartilage harvest and chondrocyte implantation). Label-free proteome profiling of dynamically compressed SFs was used to identify predictive markers of ACI success or failure and to investigate the biological pathways involved in the clinical response to ACI. Results Only 1 protein displayed a ≥2.0-fold differential abundance in the preclinical SF of ACI responders versus non-responders. However, there is a marked difference between these two groups with regard to their proteome shift in response to cartilage harvest, with 24 and 92 proteins showing ≥2.0-fold differential abundance between Stages I and II in responders and non-responders, respectively. Proteomic data has been uploaded to ProteomeXchange (identifier: PXD005220). We have validated two biologically relevant protein changes associated with this response, demonstrating that matrix metalloproteinase 1 was prominently elevated and S100 calcium binding protein A13 was reduced in response to cartilage harvest in non-responders. Conclusions The differential proteomic response to cartilage harvest noted in responders versus non-responders is completely novel. Our analyses suggest several pathways which appear to be altered in non-responders that are worthy of further investigation to elucidate the mechanisms of ACI failure. These protein changes highlight many putative biomarkers that may have potential for prediction of ACI treatment success.
Collapse
Affiliation(s)
- Charlotte H Hulme
- Institute of Science and Technology in Medicine, Keele University, Keele, Staffordshire, UK.,Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK
| | - Emma L Wilson
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK.,Institute of Medicine, Chester University, Chester, UK
| | - Mandy J Peffers
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Sally Roberts
- Institute of Science and Technology in Medicine, Keele University, Keele, Staffordshire, UK.,Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK
| | - Deborah M Simpson
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - James B Richardson
- Institute of Science and Technology in Medicine, Keele University, Keele, Staffordshire, UK.,Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK
| | - Pete Gallacher
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK
| | - Karina T Wright
- Institute of Science and Technology in Medicine, Keele University, Keele, Staffordshire, UK. .,Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK.
| |
Collapse
|
11
|
Repair of osteochondral defects with in vitro engineered cartilage based on autologous bone marrow stromal cells in a swine model. Sci Rep 2017; 7:40489. [PMID: 28084417 PMCID: PMC5234019 DOI: 10.1038/srep40489] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/06/2016] [Indexed: 12/27/2022] Open
Abstract
Functional reconstruction of large osteochondral defects is always a major challenge in articular surgery. Some studies have reported the feasibility of repairing articular osteochondral defects using bone marrow stromal cells (BMSCs) and biodegradable scaffolds. However, no significant breakthroughs have been achieved in clinical translation due to the instability of in vivo cartilage regeneration based on direct cell-scaffold construct implantation. To overcome the disadvantages of direct cell-scaffold construct implantation, the current study proposed an in vitro cartilage regeneration strategy, providing relatively mature cartilage-like tissue with superior mechanical properties. Our strategy involved in vitro cartilage engineering, repair of osteochondral defects, and evaluation of in vivo repair efficacy. The results demonstrated that BMSC engineered cartilage in vitro (BEC-vitro) presented a time-depended maturation process. The implantation of BEC-vitro alone could successfully realize tissue-specific repair of osteochondral defects with both cartilage and subchondral bone. Furthermore, the maturity level of BEC-vitro had significant influence on the repaired results. These results indicated that in vitro cartilage regeneration using BMSCs is a promising strategy for functional reconstruction of osteochondral defect, thus promoting the clinical translation of cartilage regeneration techniques incorporating BMSCs.
Collapse
|
12
|
Cuéllar VG, Cuéllar JM, Kirsch T, Strauss EJ. Correlation of Synovial Fluid Biomarkers With Cartilage Pathology and Associated Outcomes in Knee Arthroscopy. Arthroscopy 2016; 32:475-85. [PMID: 26524935 DOI: 10.1016/j.arthro.2015.08.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 07/27/2015] [Accepted: 08/25/2015] [Indexed: 02/02/2023]
Abstract
PURPOSE To correlate the intraoperative concentrations of 20 synovial fluid biomarkers with preoperative symptoms, intraoperative findings, and postoperative outcomes in patients undergoing knee arthroscopy, with comparisons made to samples obtained from asymptomatic knees. METHODS Synovial fluid samples were obtained from 81 patients undergoing knee arthroscopy meeting the inclusion criteria, which included 70 samples from operative knees and 32 samples from contralateral knees. Preoperatively, baseline data obtained from clinical questionnaires including a visual analog scale (VAS) score, the Lysholm score, and the Knee Injury and Osteoarthritis Outcome Score-Physical Function Short Form were recorded. Synovial fluid was collected from both the operative knee and asymptomatic contralateral knee. Synovial fluid was stored with a protease inhibitor at -80°C until analysis. Intraoperative findings, procedures performed, and International Cartilage Repair Society (ICRS) cartilage status scores in all operative knees were documented. The concentrations of the following 20 biomarkers were measured using a multiplex magnetic bead immunoassay: matrix metalloproteinase (MMP) 3; MMP-13; tissue inhibitor of metalloproteinase (TIMP) 1; TIMP-2; TIMP-3; TIMP-4; fibroblast growth factor 2; eotaxin; interferon γ; interleukin (IL) 10; platelet-derived growth factor BB; IL-1 receptor antagonist; IL-1β; IL-6; monocyte chemotactic protein 1 (MCP-1); macrophage inflammatory protein 1α; macrophage inflammatory protein 1β; RANTES (regulated upon activation, normal T cell expressed and secreted); tumor necrosis factor α; and vascular endothelial growth factor. Clinical outcome scores were obtained in 83% of patients at a mean of 17 months' follow-up postoperatively. Analysis of variance and Pearson correlation analysis were performed to determine statistical significance between preoperative data, intraoperative findings, postoperative outcomes, and synovial fluid biomarker concentrations compared with asymptomatic contralateral knees. RESULTS Analysis was performed on 70 operative and 32 contralateral samples. There were strong positive correlations between ICRS score and age, symptom duration, VAS score, and Knee Injury and Osteoarthritis Outcome Score-Physical Function Short Form. A strong positive correlation was found between MCP-1 and IL-6 concentrations, intraoperative ICRS score, and continued pain at the time of final follow-up. MCP-1 and IL-6 were the strongest predictors of severe cartilage lesions, whereas IL-1 receptor antagonist was inversely related. MMP-3 levels were consistently elevated in all operative samples and directly correlated to increased preoperative VAS scores. RANTES, vascular endothelial growth factor, and platelet-derived growth factor BB were the strongest predictors of postoperative improvement at final follow-up regardless of injury and cartilage status. CONCLUSIONS Synovial fluid biomarkers have the capacity to reflect the intra-articular environment before surgery and potentially predict postoperative clinical outcomes. Recognition of key molecular players may yield future therapeutic targets, and large clinical trials exploring these discoveries are anticipated. LEVEL OF EVIDENCE Level III, therapeutic case-control study.
Collapse
Affiliation(s)
- Vanessa G Cuéllar
- Department of Orthopaedic Surgery, NYU Hospital for Joint Diseases, New York, New York, U.S.A
| | - Jason M Cuéllar
- Department of Orthopaedic Surgery, NYU Hospital for Joint Diseases, New York, New York, U.S.A
| | - Thorsten Kirsch
- Department of Orthopaedic Surgery, NYU Hospital for Joint Diseases, New York, New York, U.S.A
| | - Eric J Strauss
- Department of Orthopaedic Surgery, NYU Hospital for Joint Diseases, New York, New York, U.S.A..
| |
Collapse
|
13
|
Stenberg J, de Windt TS, Synnergren J, Hynsjö L, van der Lee J, Saris DBF, Brittberg M, Peterson L, Lindahl A. Clinical Outcome 3 Years After Autologous Chondrocyte Implantation Does Not Correlate With the Expression of a Predefined Gene Marker Set in Chondrocytes Prior to Implantation but Is Associated With Critical Signaling Pathways. Orthop J Sports Med 2014; 2:2325967114550781. [PMID: 26535366 PMCID: PMC4555627 DOI: 10.1177/2325967114550781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: There is a need for tools to predict the chondrogenic potency of autologous cells for cartilage repair. Purpose: To evaluate previously proposed chondrogenic biomarkers and to identify new biomarkers in the chondrocyte transcriptome capable of predicting clinical success or failure after autologous chondrocyte implantation. Study Design: Controlled laboratory study and case-control study; Level of evidence, 3. Methods: Five patients with clinical improvement after autologous chondrocyte implantation and 5 patients with graft failures 3 years after implantation were included. Surplus chondrocytes from the transplantation were frozen for each patient. Each chondrocyte sample was subsequently thawed at the same time point and cultured for 1 cell doubling, prior to RNA purification and global microarray analysis. The expression profiles of a set of predefined marker genes (ie, collagen type II α1 [COL2A1], bone morphogenic protein 2 [BMP2], fibroblast growth factor receptor 3 [FGFR3], aggrecan [ACAN], CD44, and activin receptor–like kinase receptor 1 [ACVRL1]) were also evaluated. Results: No significant difference in expression of the predefined marker set was observed between the success and failure groups. Thirty-nine genes were found to be induced, and 38 genes were found to be repressed between the 2 groups prior to autologous chondrocyte implantation, which have implications for cell-regulating pathways (eg, apoptosis, interleukin signaling, and β-catenin regulation). Conclusion: No expressional differences that predict clinical outcome could be found in the present study, which may have implications for quality control assessments of autologous chondrocyte implantation. The subtle difference in gene expression regulation found between the 2 groups may strengthen the basis for further research, aiming at reliable biomarkers and quality control for tissue engineering in cartilage repair. Clinical Relevance: The present study shows the possible limitations of using gene expression before transplantation to predict the chondrogenic and thus clinical potency of the cells. This result is especially important as the chondrogenic potential of the chondrocytes is currently part of quality control measures according to European and American legislations regarding advanced therapies.
Collapse
Affiliation(s)
- Johan Stenberg
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Tommy S de Windt
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jane Synnergren
- School of Life Sciences, System Biology Research Centre, University of Skövde, Skövde, Sweden
| | - Lars Hynsjö
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Josefine van der Lee
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniel B F Saris
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands. ; MIRA Institute for Biotechnology and Technical Medicine, University of Twente, Enschede, the Netherlands
| | - Mats Brittberg
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lars Peterson
- Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anders Lindahl
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Correlation of synovial cytokine expression with quality of cells used for autologous chondrocyte implantation in human knees. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2014; 24:1563-70. [DOI: 10.1007/s00590-014-1436-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 03/02/2014] [Indexed: 11/26/2022]
|
15
|
Albro MB, Nims RJ, Cigan AD, Yeroushalmi KJ, Shim JJ, Hung CT, Ateshian GA. Dynamic mechanical compression of devitalized articular cartilage does not activate latent TGF-β. J Biomech 2013; 46:1433-9. [PMID: 23540376 DOI: 10.1016/j.jbiomech.2013.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/27/2013] [Accepted: 03/06/2013] [Indexed: 11/24/2022]
Abstract
A growing body of research has highlighted the role that mechanical forces play in the activation of latent TGF-β in biological tissues. In synovial joints, it has recently been demonstrated that the mechanical shearing of synovial fluid, induced during joint motion, rapidly activates a large fraction of its soluble latent TGF-β content. Based on this observation, the primary hypothesis of the current study is that the mechanical deformation of articular cartilage, induced by dynamic joint motion, can similarly activate the large stores of latent TGF-β bound to the tissue extracellular matrix (ECM). Here, devitalized deep zone articular cartilage cylindrical explants (n=84) were subjected to continuous dynamic mechanical loading (low strain: ±2% or high strain: ±7.5% at 0.5Hz) for up to 15h or maintained unloaded. TGF-β activation was measured in these samples over time while accounting for the active TGF-β that remains bound to the cartilage ECM. Results indicate that TGF-β1 is present in cartilage at high levels (68.5±20.6ng/mL) and resides predominantly in the latent form (>98% of total). Under dynamic loading, active TGF-β1 levels did not statistically increase from the initial value nor the corresponding unloaded control values for any test, indicating that physiologic dynamic compression of cartilage is unable to directly activate ECM-bound latent TGF-β via purely mechanical pathways and leading us to reject the hypothesis of this study. These results suggest that deep zone articular chondrocytes must alternatively obtain access to active TGF-β through chemical-mediated activation and further suggest that mechanical deformation is unlikely to directly activate the ECM-bound latent TGF-β of various other tissues, such as muscle, ligament, and tendon.
Collapse
Affiliation(s)
- Michael B Albro
- Department of Mechanical Engineering, Columbia University, 500 West 120th Street, 220 S.W. Mudd, NY 10027, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Martínez de Albornoz Torrente P, Forriol F. [Changes in synovial fluid in different knee-joint diseases]. Rev Esp Cir Ortop Traumatol (Engl Ed) 2012; 56:140-8. [PMID: 23594756 DOI: 10.1016/j.recot.2011.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/25/2011] [Accepted: 10/27/2011] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To analyse the changes in synovial fluid (SF) in the most common knees joint diseases, and to establish a relationship according to its concentration. MATERIAL AND METHODS A total of 62 synovial fluids were analysed from knees with, meniscus disease (32), anterior cruciate ligament (ACL) (17) and isolated chondral injury (13). A quantitative and quality study was performed on each sample, which included cytokines IL-1, IL-2, IL-6, IL-10, TNF-α, and growth factors, IGF-1 and TGF-ß). RESULTS The SF environment in the ACL injury was mainly anabolic and inflammatory, with increased levels of IL1, IL6, significant levels of TGF-ß (P=.02 and P=.004), IL-10 (P=.046 and P=.047) and significantly decreased levels of TNF-α (P=.02 and P=.004). There was mainly a catabolic environment in chondral and meniscal disease, with a significant increase in TNF-α and a significant decrease in TGF-ß (P=.02 and P=.004). The differences were greater in the case of isolated chondral injury. CONCLUSION The changes observed show that, as well as the biomechanical changes, the SF has a negative effect on joint homeostasis, it composition varying depending on the type of pathology.
Collapse
|
18
|
Egli RJ, Wernike E, Grad S, Luginbühl R. Physiological cartilage tissue engineering effect of oxygen and biomechanics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 289:37-87. [PMID: 21749898 DOI: 10.1016/b978-0-12-386039-2.00002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In vitro engineering of cartilaginous tissues has been studied for many years, and tissue-engineered constructs are sought to be used clinically for treating articular cartilage defects. Even though there is a plethora of studies and data available, no breakthroughs have been achieved yet that allow for implanting in vivo cultured articular cartilaginous tissues in patients. A review of contributions to cartilage tissue engineering over the past decades emphasizes that most of the studies were performed under environmental conditions neglecting the physiological situation. This is specifically pronounced in the use of bioreactor systems which neither allow for application of near physiomechanical stimulations nor for controlling a hypoxic environment as it is experienced in synovial joints. It is suspected that the negligence of these important parameters has slowed down progress and prevented major breakthroughs in the field. This review focuses on the main aspects of cartilage tissue engineering with emphasis on the relation and understanding of employing physiological conditions.
Collapse
|
19
|
Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 2012; 20:423-35. [PMID: 22173730 PMCID: PMC3282009 DOI: 10.1007/s00167-011-1818-0] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/22/2011] [Indexed: 12/20/2022]
Abstract
Osteoarthritis is the most common joint disease and a major cause of disability. The knee is the large joint most affected. While chronological age is the single most important risk factor of osteoarthritis, the pathogenesis of knee osteoarthritis in the young patient is predominantly related to an unfavorable biomechanical environment at the joint. This results in mechanical demand that exceeds the ability of a joint to repair and maintain itself, predisposing the articular cartilage to premature degeneration. This review examines the available basic science, preclinical and clinical evidence regarding several such unfavorable biomechanical conditions about the knee: malalignment, loss of meniscal tissue, cartilage defects and joint instability or laxity. Level of evidence IV.
Collapse
|
20
|
Matrix metalloproteases MMP-2 and MMP-9: are they early biomarkers of bone remodelling and healing after arthroscopic acromioplasty? Injury 2010; 41:1204-7. [PMID: 20950805 DOI: 10.1016/j.injury.2010.09.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Arthroscopic acromioplasty, one of the most frequent procedures in shoulder surgery, can promote tissue healing process by the release of growth/angiogenic factors from the acromion. Matrix metalloproteinases MMP-2 and MMP-9 are involved in such process. The purpose of this study was to measure MMP-2 and MMP-9 levels in the articular fluid and in the peripheral blood of patients undergoing arthroscopic acromioplasty in order to better understand the local involvement of such factors in the healing process after surgical procedures. Concentrations of MMP-2 and MMP-9 in the subacromial space and peripheral blood collected shortly after surgery were determined by ELISA. MMP-2 and MMP-9 concentrations were measured in the subacromial fluid of 23 patients. In subacromial fluid, the levels between MMP-2 and MMP-9 did not reach statistical significance (127.15±45.56 vs 149.41±53.61 pg/ml, respectively, p>0.05). Peripheral blood levels of MMP-2 (130.75±47.48 pg/ml) were comparable to the subacromial fluid ones (127.15±45.56 pg/ml) whereas MMP-9 level was higher in the subacromial space (149.41±53.61 pg/ml) than in the peripheral blood (67.61±12.62 pg/ml, p<0.001). This work suggests that the measurement of bone specific MMPs (MMP-2 and MMP-9) can be an useful tool to be monitored in parallel with growth factor levels and other bone turnover markers in order to evaluate the bone remodelling and tissue healing processes. This study suggests that the measurement of bone specific MMPs levels, in particular MMP-9, may evaluate the bone remodelling and healing after arthroscopic shoulder acromioplasty.
Collapse
|
21
|
van Osch GJVM, Brittberg M, Dennis JE, Bastiaansen-Jenniskens YM, Erben RG, Konttinen YT, Luyten FP. Cartilage repair: past and future--lessons for regenerative medicine. J Cell Mol Med 2009; 13:792-810. [PMID: 19453519 PMCID: PMC3823400 DOI: 10.1111/j.1582-4934.2009.00789.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Since the first cell therapeutic study to repair articular cartilage defects in the knee in 1994, several clinical studies have been reported. An overview of the results of clinical studies did not conclusively show improvement over conventional methods, mainly because few studies reach level I of evidence for effects on middle or long term. However, these explorative trials have provided valuable information about study design, mechanisms of repair and clinical outcome and have revealed that much is still unknown and further improvements are required. Furthermore, cellular and molecular studies using new technologies such as cell tracking, gene arrays and proteomics have provided more insight in the cell biology and mechanisms of joint surface regeneration. Besides articular cartilage, cartilage of other anatomical locations as well as progenitor cells are now considered as alternative cell sources. Growth Factor research has revealed some information on optimal conditions to support cartilage repair. Thus, there is hope for improvement. In order to obtain more robust and reproducible results, more detailed information is needed on many aspects including the fate of the cells, choice of cell type and culture parameters. As for the clinical aspects, it becomes clear that careful selection of patient groups is an important input parameter that should be optimized for each application. In addition, the study outcome parameters should be improved. Although reduced pain and improved function are, from the patient's perspective, the most important outcomes, there is a need for more structure/tissue-related outcome measures. Ideally, criteria and/or markers to identify patients at risk and responders to treatment are the ultimate goal for these more sophisticated regenerative approaches in joint surface repair in particular, and regenerative medicine in general.
Collapse
Affiliation(s)
- Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|