1
|
Baek J, Ryu B, Kim J, Lee SG, Oh MS, Hong KS, Kim EY, Kim CY, Chung HM. Immunomodulation of Pluripotent Stem Cell-Derived Mesenchymal Stem Cells in Rotator Cuff Tears Model. Biomedicines 2022; 10:biomedicines10071549. [PMID: 35884853 PMCID: PMC9312476 DOI: 10.3390/biomedicines10071549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Rotator cuff tears (RCTs) induce chronic muscle weakness and shoulder pain. Treatment of RCT using surgery or drugs causes lipid infiltration and fibrosis, which hampers tissue regeneration and complete recovery. The pluripotent stem cell-derived multipotent mesenchymal stem cells (M-MSCs) represent potential candidate next-generation therapies for RCT. Methods: The difference between M-MSCs and adult-MSCs was compared and analyzed using next-generation sequencing (NGS). In addition, using a rat model of RCT, the muscle recovery ability of M-MSCs and adult-MSCs was evaluated by conducting a histological analysis and monitoring the cytokine expression level. Results: Using NGS, it was confirmed that M-MSC was suitable for transplantation because of its excellent ability to regulate inflammation that promotes tissue repair and reduced apoptosis and rejection during transplantation. In addition, while M-MSCs persisted for up to 8 weeks in vivo, they significantly reduced inflammation and adipogenesis-related cytokine levels in rat muscle. Significant differences were also confirmed in histopathological remission. Conclusions: M-MSCs remain in the body longer to modulate immune responses in RCTs and have a greater potential to improve muscle recovery by alleviating acute inflammatory responses. This indicates that M-MSCs could be used in potential next-generation RCT therapies.
Collapse
Affiliation(s)
- Jieun Baek
- Departmentof Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (S.-G.L.); (M.-S.O.)
| | - Bokyeong Ryu
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (B.R.); (J.K.)
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jin Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (B.R.); (J.K.)
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Seul-Gi Lee
- Departmentof Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (S.-G.L.); (M.-S.O.)
| | - Min-Seok Oh
- Departmentof Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (S.-G.L.); (M.-S.O.)
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Ki-Sung Hong
- Mireacellbio Co., Ltd., Seoul 04795, Korea; (K.-S.H.); (E.-Y.K.)
| | - Eun-Young Kim
- Mireacellbio Co., Ltd., Seoul 04795, Korea; (K.-S.H.); (E.-Y.K.)
| | - C-Yoon Kim
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (B.R.); (J.K.)
- Correspondence: (C.-Y.K.); (H.-M.C.); Tel.: +82-10-9140-0136 (C.-Y.K.); +82-10-7190-1926 (H.-M.C.); Fax: +82-2-455-9012 (C.-Y.K. & H.-M.C.)
| | - Hyung-Min Chung
- Departmentof Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea; (J.B.); (S.-G.L.); (M.-S.O.)
- Mireacellbio Co., Ltd., Seoul 04795, Korea; (K.-S.H.); (E.-Y.K.)
- Correspondence: (C.-Y.K.); (H.-M.C.); Tel.: +82-10-9140-0136 (C.-Y.K.); +82-10-7190-1926 (H.-M.C.); Fax: +82-2-455-9012 (C.-Y.K. & H.-M.C.)
| |
Collapse
|
2
|
Hyman SA, Wu IT, Vasquez-Bolanos LS, Norman MB, Esparza MC, Bremner SN, Dorn SN, Ramirez I, Fithian DC, Lane JG, Singh A, Ward SR. Supraspinatus muscle architecture and physiology in a rabbit model of tenotomy and repair. J Appl Physiol (1985) 2021; 131:1708-1717. [PMID: 34647843 PMCID: PMC8828274 DOI: 10.1152/japplphysiol.01119.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 09/20/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022] Open
Abstract
Chronic rotator cuff tears can cause severe functional deficits. Addressing the chronic fatty and fibrotic muscle changes is of high clinical interest; however, the architectural and physiological consequences of chronic tear and repair are poorly characterized. We present a detailed architectural and physiological analysis of chronic tear and repair (both over 8 and 16 wk) compared with age-matched control rabbit supraspinatus (SSP) muscles. Using female New Zealand White Rabbits (n = 30, n = 6/group) under 2% isoflurane anesthesia, the SSP was surgically isolated and maximum isometric force was measured at four to six muscle lengths. Architectural analysis was performed, and maximum isometric stress was computed. Whole muscle length-tension curves were generated using architectural measurements to compare experimental physiology to theoretical predictions. Architectural measures are consistent with persistent radial and longitudinal atrophy over time in tenotomy that fails to recover after repair. Maximum isometric force was significantly decreased after 16 wk tenotomy and not significantly improved after repair. Peak isometric force reported here are greater than prior reports of rabbit SSP force after tenotomy. Peak stress was not significantly different between groups and consistent with prior literature of SSP stress. Muscle strain during contraction was significantly decreased after 8 wk of tenotomy and repair, indicating effects of tear and repair on muscle function. The experimental length-tension data were overlaid with predicted curves for each experimental group (generated from structural data), exposing the altered structure-function relationship for tenotomy and repair over time. Data presented here contribute to understanding the physiological implications of disease and repair in the rotator cuff.NEW & NOTEWORTHY We utilize an established method to measure the length-tension relationship for the rabbit supraspinatus in normal, torn, and repaired muscles. We then perform architectural analysis to evaluate structural changes after tear and repair. Although peak isometric force is lower in the tear and repair groups, there are no differences in peak stresses across groups. These findings indicate persistent structural changes (both radial and longitudinal atrophy) and physiological deficiencies (decreased peak force and uncoupling structure-function relationship) after tenotomy that do not significantly recover after repair.
Collapse
Affiliation(s)
- Sydnee A Hyman
- Department of Bioengineering, University of California, San Diego, California
- Department of Orthopaedic Surgery, University of California, San Diego, California
| | - Isabella T Wu
- Department of Orthopaedic Surgery, University of California, San Diego, California
| | - Laura S Vasquez-Bolanos
- Department of Bioengineering, University of California, San Diego, California
- Department of Orthopaedic Surgery, University of California, San Diego, California
| | - Mackenzie B Norman
- Department of Orthopaedic Surgery, University of California, San Diego, California
- Dartmouth Geisel School of Medicine, Hanover, New Hampshire
| | - Mary C Esparza
- Department of Orthopaedic Surgery, University of California, San Diego, California
| | - Shannon N Bremner
- Department of Orthopaedic Surgery, University of California, San Diego, California
| | - Shanelle N Dorn
- Department of Orthopaedic Surgery, University of California, San Diego, California
| | - Ivan Ramirez
- Department of Orthopaedic Surgery, University of California, San Diego, California
| | - Donald C Fithian
- Department of Orthopaedic Surgery, University of California, San Diego, California
| | - John G Lane
- Department of Orthopaedic Surgery, University of California, San Diego, California
| | - Anshuman Singh
- Department of Orthopaedic Surgery, University of California, San Diego, California
- Department of Orthopaedic Surgery, Kaiser Permanente, San Diego, California
| | - Samuel R Ward
- Department of Bioengineering, University of California, San Diego, California
- Department of Orthopaedic Surgery, University of California, San Diego, California
- Department of Radiology, University of California, San Diego, California
| |
Collapse
|
3
|
Anderson LE, Pearson JJ, Brimeyer AL, Temenoff JS. Injection of Micronized Human Amnion/Chorion Membrane Results in Increased Early Supraspinatus Muscle Regeneration in a Chronic Model of Rotator Cuff Tear. Ann Biomed Eng 2021; 49:3698-3710. [PMID: 34766224 DOI: 10.1007/s10439-021-02880-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/18/2021] [Indexed: 01/08/2023]
Abstract
Surgical repair of severe rotator cuff tear often results in retear due to unaddressed muscle degeneration. The objective of this study was to test the regenerative potential of micronized dehydrated Human Amnion/Chorion Membrane (dHACM), in a clinically relevant delayed reattachment model of rotator cuff repair. Micronized dHACM was injected into rat supraspinatus muscle during tendon re-attachment surgery, three weeks after original tendon injury. One week after material injection, inflammatory and mesenchymal stem cell infiltration into supraspinatus muscles was assessed via flow cytometry. Histological methods were utilized to assess structural and regenerative changes in muscle one and three weeks after material injection. Micronized dHACM injection resulted in increased M1-like macrophages (17.1 [Formula: see text] fold change over contralateral controls) and regenerating muscle fibers (4.3% vs 1.7% in saline treated muscles) one week after injection compared to saline treated muscles. Tendon reattachment itself exhibited intrinsic healing in this model, demonstrated by a general return of muscle weight and reduced fibrosis. Our results indicate that injection of micronized dHACM may initiate an inflammatory response in degenerated muscle that promotes early muscle regeneration, and that our animal model may be a suitable platform for studying treatments in muscle at early timepoints, before intrinsic healing occurs.
Collapse
Affiliation(s)
- Leah E Anderson
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, 315 Ferst Dr., Atlanta, GA, 30332, USA
| | - Joseph J Pearson
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, 315 Ferst Dr., Atlanta, GA, 30332, USA
| | - Alexandra L Brimeyer
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, 315 Ferst Dr., Atlanta, GA, 30332, USA
| | - Johnna S Temenoff
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, 315 Ferst Dr., Atlanta, GA, 30332, USA.
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Polydeoxyribonucleotide and Polynucleotide Improve Tendon Healing and Decrease Fatty Degeneration in a Rat Cuff Repair Model. Tissue Eng Regen Med 2021; 18:1009-1020. [PMID: 34387852 DOI: 10.1007/s13770-021-00378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND After surgical repair of chronic rotator cuff tears, healing of the repaired tendons often fails and is accompanied by high-level fatty degeneration. Our purpose was to explore the effects of polydeoxyribonucleotide (PDRN) and polynucleotide (PN) on tendon healing and the reversal of fatty degeneration in a chronic rotator cuff tear model using a rat infraspinatus. METHODS Sixty rats were randomly assigned to the following three groups (20 rats per group: 12 for histological evaluation and 8 for mechanical testing): saline + repair (SR), PDRN + repair (PR), and PN + repair (PNR). The right shoulder was used for experimental intervention, and the left served as a control. Four weeks after detaching the infraspinatus, the torn tendon was repaired. Saline, PDRN, and PN were applied to the repair sites. Histological evaluation was performed 3 and 6 weeks after repair and biomechanical analysis was performed at 6 weeks. RESULTS Three weeks after repair, the PR and PNR groups had more CD168-stained cells than the SR group. The PR group showed a larger cross-sectional area (CSA) of muscle fibers than the SR and PNR groups. Six weeks after repair, the PR and PNR groups showed more adipose cells, less CD68-stained cells, and more parallel tendon collagen fibers than the SR group. The PR group had more CD 68-stained cells than the PNR group. The PR group showed a larger CSA than the SR group. The mean load-to-failure values of the PR and PNR groups were higher than that of the SR group, although these differences were not significant. CONCLUSION PDRN and PN may improve tendon healing and decrease fatty degeneration after cuff repair.
Collapse
|
5
|
Hyman SA, Norman MB, Dorn SN, Bremner SN, Esparza MC, Lieber RL, Ward SR. In vivo supraspinatus muscle contractility and architecture in rabbit. J Appl Physiol (1985) 2020; 129:1405-1412. [PMID: 33031015 DOI: 10.1152/japplphysiol.00609.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rotator cuff (RC) muscles are crucial in moving and stabilizing the glenohumeral joint, and tears can be functionally devastating. Chronic fatty and fibrotic muscle changes, which are nonresponsive to surgical tendon repair, are a focus of contemporary research. The rabbit model recapitulates key biological features of human RC tears, but function and physiology are poorly characterized; limited force and stress data are inconsistent with literature norms in other mammalian species. Here, we present an improved method to assess the physiology of the rabbit supraspinatus muscle (SSP), and we report values for healthy SSP architecture and physiology. Using female New Zealand White Rabbits (n = 6) under 2% isoflurane anesthesia, we surgically isolated the SSP and maximum isometric force measured at 4-6 muscle lengths. Architectural analysis was performed, and maximum isometric stress was computed. Whole muscle length-tension curves were generated using architectural measurements to compare experimental physiology to theoretical predictions. Maximum isometric force (80.87 ± 5.58 N) was dramatically greater than previous reports (11.06 and 16.1 N; P < 0.05). Architectural measurement of fiber length (34.25 ± 7.18 mm), muscle mass (9.9 ± 0.93 g), pennation angle (23.67 ± 8.32°), and PCSA (2.57 ± 0.20 cm2) were consistent with prior literature. Isometric stress (30.5 ± 3.07 N/cm2) was greater than previous reports of rabbit SSP (3.10 and 4.51 N/cm2), but similar to mammalian skeletal muscles (15.7-30.13 N/cm2). Previous studies underestimated peak force by ∼90%, which has profound implications for interpreting physiological changes as a function of disease state. The data that are presented here enable understanding the physiological implications of disease and repair in the RC of the rabbit.NEW & NOTEWORTHY We introduce an improved method to assess rabbit supraspinatus muscle physiology. Maximum isometric force measured for the rabbit supraspinatus was dramatically greater than previous reports in the literature. Consequently, the isometric contractile stress reported is almost 10 times greater than previous reports of rabbit supraspinatus, but similar to available literature of other mammalian skeletal muscle. We show that previous reports of peak supraspinatus isometric force were subphysiological by ∼90.
Collapse
Affiliation(s)
- Sydnee A Hyman
- Department of Bioengineering, University of California, San Diego, California.,Department of Orthopaedic Surgery, University of California, San Diego, California
| | - Mackenzie B Norman
- Department of Orthopaedic Surgery, University of California, San Diego, California.,Dartmouth Geisel School of Medicine, Hanover, New Hampshire
| | - Shanelle N Dorn
- Department of Orthopaedic Surgery, University of California, San Diego, California
| | - Shannon N Bremner
- Department of Orthopaedic Surgery, University of California, San Diego, California
| | - Mary C Esparza
- Department of Orthopaedic Surgery, University of California, San Diego, California
| | - Richard L Lieber
- Shirley Ryan Ability Lab, Northwestern University, Chicago, Illinois
| | - Samuel R Ward
- Department of Bioengineering, University of California, San Diego, California.,Department of Orthopaedic Surgery, University of California, San Diego, California.,Department of Radiology, University of California, San Diego, California
| |
Collapse
|
6
|
Kuwahara Y, Kishimoto KN, Itoigawa Y, Okuno H, Hatta T, Matsuzawa G, Itoi E. Fatty degeneration and wnt10b expression in the supraspinatus muscle after surgical repair of torn rotator cuff tendon. J Orthop Surg (Hong Kong) 2020; 27:2309499019864817. [PMID: 31382826 DOI: 10.1177/2309499019864817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PURPOSE In the torn rotator cuff muscles, decreased expression of wnt10b prior to elevation of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα) has previously been reported. The purpose of this study is to elucidate the expression profiles of these adipogenesis-related genes after rotator cuff detachment and reattachment in a rabbit model. METHODS We investigated gene expression profiles of PPARγ, C/EBPα, and wnt10b in different parts of rabbit supraspinatus (SSP) muscle after tendon detachment (n = 6 for each time point). In addition, we assessed expression of the same genes after SSP reattachment with different intervals from initial detachment (n = 6). Fatty degeneration of the SSP muscle was examined by Oil red-O staining. Gene expression profiles were examined by quantitative real-time polymerase chain reaction. RESULTS After SSP detachment, Oil red-O-positive oil deposits increased after 3 weeks. In the SSP reattachment model, numerous Oil red-O-positive cells were present at 5-week reattachment, following 2- and 3-week detachment. PPARγ and C/EBPα messenger ribonucleic acid expression exhibited a significant increase at 2 and 3 weeks after SSP detachment and remained increased at 5-week reattachment after 2- and 3-week detachment. A decreased expression of wnt10b was observed from 1 week after SSP detachment. Expression of wnt10b was recovered not in the central area of the SSP muscle but in the periphery after reattachment. Adipogenic change was not observed when SSP tendon was reattached after 1-week detachment. CONCLUSIONS These results may suggest that once the adipogenic transcription factors, PPARγ and C/EBPα, were elevated, repair surgery after rotator cuff tear could not prevent the emergence of fat in the SSP muscle.
Collapse
Affiliation(s)
- Yoshiyuki Kuwahara
- 1 Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Koshi N Kishimoto
- 1 Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan.,2 Department of Orthopaedic Surgery, Tohoku Kosai Hospital, Sendai, Japan
| | - Yoshiaki Itoigawa
- 3 Department of Orthopaedic Surgery, Juntendo University, Tokyo, Japan
| | - Hiroshi Okuno
- 1 Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Taku Hatta
- 1 Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Gaku Matsuzawa
- 1 Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Eiji Itoi
- 1 Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Talarek JR, Piacentini AN, Konja AC, Wada S, Swanson JB, Nussenzweig SC, Dines JS, Rodeo SA, Mendias CL. The MRL/MpJ Mouse Strain Is Not Protected From Muscle Atrophy and Weakness After Rotator Cuff Tear. J Orthop Res 2020; 38:811-822. [PMID: 31696955 PMCID: PMC7071998 DOI: 10.1002/jor.24516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/04/2019] [Indexed: 02/04/2023]
Abstract
Chronic rotator cuff tears are a common source of shoulder pain and disability. Patients with rotator cuff tears often have substantial weakness, fibrosis, and fat accumulation, which limit successful surgical repair and postoperative rehabilitation. The Murphy Roths Large (MRL) strain of mice have demonstrated superior healing and protection against pathological changes in several disease and injury conditions. We tested the hypothesis that, compared with the commonly used C57Bl/6 (B6) strain, MRL mice would have less muscle fiber atrophy and fat accumulation, and be protected against the loss in force production that occurs after cuff tear. Adult male B6 and MRL mice were subjected to a rotator cuff tear, and changes in muscle fiber contractility and histology were measured. RNA sequencing and shotgun metabolomics and lipidomics were also performed. The muscles were harvested one month after tear. B6 and MRL mice had a 40% reduction in relative muscle force production after rotator cuff tear. RNA sequencing identified an increase in fibrosis-associated genes and a reduction in mitochondrial metabolism genes. The markers of glycolytic metabolism increased in B6 mice, while MRL mice appeared to increase amino acid metabolism after tear. There was an accumulation of lipid after injury, although there was a divergent response between B6 and MRL mice in the types of lipid species that accrued. There were strain-specific differences between the transcriptome, metabolome, and lipidome of B6 and MRL mice, but these differences did not protect MRL mice from weakness and pathological changes after rotator cuff tear. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:811-822, 2020.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joshua S Dines
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY
| | - Scott A Rodeo
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY
| | - Christopher L Mendias
- Hospital for Special Surgery, New York, NY
- Department of Orthopaedic Surgery, Weill Cornell Medical College, New York, NY
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY
- Corresponding Author: Christopher Mendias, PhD, Hospital for Special Surgery, 535 E 70th St, New York, NY 10021, USA, +1 212-606-1785 office, +1 212-249-2373 fax,
| |
Collapse
|
8
|
Sarver DC, Sugg KB, Talarek JR, Swanson JB, Oliver DJ, Hinken AC, Kramer HF, Mendias CL. Prostaglandin D 2 signaling is not involved in the recovery of rat hind limb tendons from injury. Physiol Rep 2019; 7:e14289. [PMID: 31782241 PMCID: PMC6882956 DOI: 10.14814/phy2.14289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Injured tendons heal through the formation of a fibrovascular scar that has inferior mechanical properties compared to native tendon tissue. Reducing inflammation that occurs as a result of the injury could limit scar formation and improve functional recovery of tendons. Prostaglandin D2 (PGD2 ) plays an important role in promoting inflammation in some injury responses and chronic disease processes, and the inhibition of PGD2 has improved healing and reduced disease burden in animal models and early clinical trials. Based on these findings, we sought to determine the role of PGD2 signaling in the healing of injured tendon tissue. We tested the hypothesis that a potent and specific inhibitor of hematopoietic PGD synthase (HPGDS), GSK2894631A, would improve the recovery of tendons of adult male rats following an acute tenotomy and repair. To test this hypothesis, we performed a full-thickness plantaris tendon tenotomy followed by immediate repair and treated rats twice daily with either 0, 2, or 6 mg/kg of GSK2894631A. Tendons were collected either 7 or 21 days after surgical repair, and mechanical properties of tendons were assessed along with RNA sequencing and histology. While there were some differences in gene expression across groups, the targeted inhibition of HPGDS did not impact the functional repair of tendons after injury, as HPGDS expression was surprisingly low in injured tendons. These results indicate that PGD2 signaling does not appear to be important in modulating the repair of injured tendon tissue.
Collapse
Affiliation(s)
- Dylan C. Sarver
- Department of Orthopaedic SurgerySection of Plastic & Reconstructive SurgeryUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Present address:
Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Kristoffer B. Sugg
- Department of Orthopaedic SurgerySection of Plastic & Reconstructive SurgeryUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Molecular & Integrative PhysiologySection of Plastic & Reconstructive SurgeryUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of SurgerySection of Plastic & Reconstructive SurgeryUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Jeffrey R. Talarek
- Department of Orthopaedic SurgerySection of Plastic & Reconstructive SurgeryUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Molecular & Integrative PhysiologySection of Plastic & Reconstructive SurgeryUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Hospital for Special SurgeryNew YorkNYUSA
| | | | | | - Aaron C. Hinken
- Muscle Metabolism DPUGlaxoSmithKline PharmaceuticalsKing of PrussiaPAUSA
| | - Henning F. Kramer
- Muscle Metabolism DPUGlaxoSmithKline PharmaceuticalsKing of PrussiaPAUSA
| | - Christopher L. Mendias
- Department of Orthopaedic SurgerySection of Plastic & Reconstructive SurgeryUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Molecular & Integrative PhysiologySection of Plastic & Reconstructive SurgeryUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Hospital for Special SurgeryNew YorkNYUSA
- Department of Physiology & BiophysicsWeill Cornell Medical CollegeNew YorkNYUSA
| |
Collapse
|
9
|
Double-row rotator cuff repairs lead to more intensive pain during the early postoperative period but have a lower risk of residual pain than single-row repairs. Knee Surg Sports Traumatol Arthrosc 2019; 27:3180-3187. [PMID: 30683950 DOI: 10.1007/s00167-019-05346-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 01/04/2019] [Indexed: 01/15/2023]
Abstract
PURPOSE The purpose of this study is to compare pain patterns and identify factors associated with residual shoulder pain after rotator cuff repairs using double-row and single-row techniques. METHODS A cohort study was performed using patients who underwent arthroscopic rotator cuff repairs at our center in 2015. Patients were allocated according to the repair technique into an single-row (SR) group or a double-row (DR) group. Visual Analog Scale (VAS) scores for pain were assessed at 1 week, 3 months, 6 months, 12 months and 24 months after surgery. Functional and radiographic assessments were performed at least 24 months postoperatively. The proportion of patients with residual pain and factors associated with residual shoulder pain (VAS > 0 at the final follow-up) were analyzed in both groups. RESULTS Fifty-two patients were enrolled in the SR group, and 53 were enrolled in the DR group. The DR group appeared to have higher levels of pain 1 week (P < 0.001) and 3 months (P = 0.041) postoperatively, while at other time points, the pain intensity of the two groups was comparable. Fourteen (26.4%) and 25 (48.1%) patients in the DR and the SR groups, respectively, developed residual shoulder pain, (P = 0.022; RR 1.82). The univariate analysis and multiple regression revealed that a poorer quality of tendon tissue is related to residual pain in the SR group, whereas tendon retraction is associated with residual pain in the DR group. The rate of re-tear was similar between the two groups and between patients with and without residual pain. CONCLUSIONS The DR repair technique results in a greater intensity of pain than that of SR repair during the first 3 months after surgery; however, patients who underwent DR repair presented a significantly lower proportion of residual shoulder pain and better tendon quality after 2 years. Poorer tendon quality and larger tendon retraction as determined intraoperatively were risk factors for residual pain. These results highlight the necessity of promoting healing on the grounds of residual pain prevention. LEVEL OF EVIDENCE II.
Collapse
|
10
|
Qazi TH, Duda GN, Ort MJ, Perka C, Geissler S, Winkler T. Cell therapy to improve regeneration of skeletal muscle injuries. J Cachexia Sarcopenia Muscle 2019; 10:501-516. [PMID: 30843380 PMCID: PMC6596399 DOI: 10.1002/jcsm.12416] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/27/2019] [Indexed: 12/14/2022] Open
Abstract
Diseases that jeopardize the musculoskeletal system and cause chronic impairment are prevalent throughout the Western world. In Germany alone, ~1.8 million patients suffer from these diseases annually, and medical expenses have been reported to reach 34.2bn Euros. Although musculoskeletal disorders are seldom fatal, they compromise quality of life and diminish functional capacity. For example, musculoskeletal disorders incur an annual loss of over 0.8 million workforce years to the German economy. Among these diseases, traumatic skeletal muscle injuries are especially problematic because they can occur owing to a variety of causes and are very challenging to treat. In contrast to chronic muscle diseases such as dystrophy, sarcopenia, or cachexia, traumatic muscle injuries inflict damage to localized muscle groups. Although minor muscle trauma heals without severe consequences, no reliable clinical strategy exists to prevent excessive fibrosis or fatty degeneration, both of which occur after severe traumatic injury and contribute to muscle degeneration and dysfunction. Of the many proposed strategies, cell-based approaches have shown the most promising results in numerous pre-clinical studies and have demonstrated success in the handful of clinical trials performed so far. A number of myogenic and non-myogenic cell types benefit muscle healing, either by directly participating in new tissue formation or by stimulating the endogenous processes of muscle repair. These cell types operate via distinct modes of action, and they demonstrate varying levels of feasibility for muscle regeneration depending, to an extent, on the muscle injury model used. While in some models the injury naturally resolves over time, other models have been developed to recapitulate the peculiarities of real-life injuries and therefore mimic the structural and functional impairment observed in humans. Existing limitations of cell therapy approaches include issues related to autologous harvesting, expansion and sorting protocols, optimal dosage, and viability after transplantation. Several clinical trials have been performed to treat skeletal muscle injuries using myogenic progenitor cells or multipotent stromal cells, with promising outcomes. Recent improvements in our understanding of cell behaviour and the mechanistic basis for their modes of action have led to a new paradigm in cell therapies where physical, chemical, and signalling cues presented through biomaterials can instruct cells and enhance their regenerative capacity. Altogether, these studies and experiences provide a positive outlook on future opportunities towards innovative cell-based solutions for treating traumatic muscle injuries-a so far unmet clinical need.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melanie J Ort
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tobias Winkler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
11
|
Tang X, Daneshmandi L, Awale G, Nair LS, Laurencin CT. Skeletal Muscle Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:233-251. [PMID: 33778155 DOI: 10.1007/s40883-019-00102-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skeletal muscles have the intrinsic ability to regenerate after minor injury, but under certain circumstances such as severe trauma from accidents, chronic diseases or battlefield injuries the regeneration process is limited. Skeletal muscle regenerative engineering has emerged as a promising approach to address this clinical issue. The regenerative engineering approach involves the convergence of advanced materials science, stem cell science, physical forces, insights from developmental biology, and clinical translation. This article reviews recent studies showing the potential of the convergences of technologies involving biomaterials, stem cells and bioactive factors in concert with clinical translation, in promoting skeletal muscle regeneration. Several types of biomaterials such as electrospun nanofibers, hydrogels, patterned scaffolds, decellularized tissues, and conductive matrices are being investigated. Detailed discussions are given on how these biomaterials can interact with cells and modulate their behavior through physical, chemical and mechanical cues. In addition, the application of physical forces such as mechanical and electrical stimulation are reviewed as strategies that can further enhance muscle contractility and functionality. The review also discusses established animal models to evaluate regeneration in two clinically relevant muscle injuries; volumetric muscle loss (VML) and muscle atrophy upon rotator cuff injury. Regenerative engineering approaches using advanced biomaterials, cells, and physical forces, developmental cues along with insights from immunology, genetics and other aspects of clinical translation hold significant potential to develop promising strategies to support skeletal muscle regeneration.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Guleid Awale
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Lakshmi S Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT 06030, USA.,Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
12
|
Gumucio JP, Qasawa AH, Ferrara PJ, Malik AN, Funai K, McDonagh B, Mendias CL. Reduced mitochondrial lipid oxidation leads to fat accumulation in myosteatosis. FASEB J 2019; 33:7863-7881. [PMID: 30939247 DOI: 10.1096/fj.201802457rr] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myosteatosis is the pathologic accumulation of lipid that can occur in conjunction with atrophy and fibrosis following skeletal muscle injury. Little is known about the mechanisms by which lipid accumulates in myosteatosis, but many clinical studies have demonstrated that the degree of lipid infiltration negatively correlates with muscle function and regeneration. Our objective was to determine the pathologic changes that result in lipid accumulation in injured muscle fibers. We used a rat model of rotator cuff injury in this study because the rotator cuff muscle group is particularly prone to the development of myosteatosis after injury. Muscles were collected from uninjured controls or 10, 30, or 60 d after injury and analyzed using a combination of muscle fiber contractility assessments, RNA sequencing, and undirected metabolomics, lipidomics, and proteomics, along with bioinformatics techniques to identify potential pathways and cellular processes that are dysregulated after rotator cuff tear. Bioinformatics analyses indicated that mitochondrial function was likely disrupted after injury. Based on these findings and given the role that mitochondria play in lipid metabolism, we then performed targeted biochemical and imaging studies and determined that mitochondrial dysfunction and reduced fatty acid oxidation likely leads to the accumulation of lipid in myosteatosis.-Gumucio, J. P., Qasawa, A. H., Ferrara, P. J., Malik, A. N., Funai, K., McDonagh, B., Mendias, C. L. Reduced mitochondrial lipid oxidation leads to fat accumulation in myosteatosis.
Collapse
Affiliation(s)
- Jonathan P Gumucio
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Austin H Qasawa
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick J Ferrara
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Afshan N Malik
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Brian McDonagh
- Department of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Christopher L Mendias
- Department of Orthopedic Surgery, University of Michigan, Ann Arbor, Michigan, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA.,Hospital for Special Surgery, New York, New York, USA.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
13
|
Schubert MF, Noah AC, Bedi A, Gumucio JP, Mendias CL. Reduced Myogenic and Increased Adipogenic Differentiation Capacity of Rotator Cuff Muscle Stem Cells. J Bone Joint Surg Am 2019; 101:228-238. [PMID: 30730482 PMCID: PMC6791507 DOI: 10.2106/jbjs.18.00509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Fat accumulation commonly occurs in chronically torn rotator cuff muscles, and increased fat within the rotator cuff is correlated with poor clinical outcomes. The extent of lipid deposition is particularly pronounced in injured rotator cuff muscles compared with other commonly injured muscles such as the gastrocnemius. Satellite cells, which are a tissue-resident muscle stem-cell population, can differentiate into fat cells. We hypothesized that satellite cells from the rotator cuff have greater intrinsic adipogenic differentiation potential than do gastrocnemius satellite cells, and this difference is due to variations in epigenetic imprinting between the cells. METHODS Satellite cells from gastrocnemius and rotator cuff muscles of mice were cultured in adipogenic media, and the capacity to differentiate into mature muscle cells and adipogenic cells was assessed (n ≥ 9 plates per muscle group). We also performed DNA methylation analysis of gastrocnemius and rotator cuff satellite cells to determine whether epigenetic differences were present between the 2 groups (n = 5 mice per group). RESULTS Compared with the gastrocnemius, satellite cells from the rotator cuff had a 23% reduction in myogenic differentiation and an 87% decrease in the expression of the differentiated muscle cell marker MRF4 (myogenic regulatory factor 4). With respect to adipogenesis, rotator cuff satellite cells had a 4.3-fold increase in adipogenesis, a 12-fold increase in the adipogenic transcription factor PPARγ (peroxisome proliferator-activated receptor gamma), and a 65-fold increase in the adipogenic marker FABP4 (fatty-acid binding protein 4). Epigenetic analysis identified 355 differentially methylated regions of DNA between rotator cuff and gastrocnemius satellite cells, and pathway enrichment analysis suggested that these regions were involved with lipid metabolism and adipogenesis. CONCLUSIONS Satellite cells from rotator cuff muscles have reduced myogenic and increased adipogenic differentiation potential compared with gastrocnemius muscles. There appears to be a cellular and genetic basis behind the generally poor rates of rotator cuff muscle healing. CLINICAL RELEVANCE The reduced myogenic and increased adipogenic capacity of rotator cuff satellite cells is consistent with the increased fat content and poor muscle healing rates often observed for chronically torn rotator cuff muscles. For patients undergoing rotator cuff repair, transplantation of autologous satellite cells from other muscles less prone to fatty infiltration may improve clinical outcomes.
Collapse
Affiliation(s)
- Manuel F. Schubert
- Departments of Orthopaedic Surgery (M.F.S., A.C.N., A.B, J.P.G, and C.L.M.) and Molecular and Integrative Physiology (A.C.N, J.P.G., and C.L.M.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Andrew C. Noah
- Departments of Orthopaedic Surgery (M.F.S., A.C.N., A.B, J.P.G, and C.L.M.) and Molecular and Integrative Physiology (A.C.N, J.P.G., and C.L.M.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Asheesh Bedi
- Departments of Orthopaedic Surgery (M.F.S., A.C.N., A.B, J.P.G, and C.L.M.) and Molecular and Integrative Physiology (A.C.N, J.P.G., and C.L.M.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Jonathan P. Gumucio
- Departments of Orthopaedic Surgery (M.F.S., A.C.N., A.B, J.P.G, and C.L.M.) and Molecular and Integrative Physiology (A.C.N, J.P.G., and C.L.M.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Christopher L. Mendias
- Departments of Orthopaedic Surgery (M.F.S., A.C.N., A.B, J.P.G, and C.L.M.) and Molecular and Integrative Physiology (A.C.N, J.P.G., and C.L.M.), University of Michigan Medical School, Ann Arbor, Michigan,Hospital for Special Surgery, New York, NY,Departments of Physiology and Biophysics and Orthopaedic Surgery, Weill Cornell Medical College, New York, NY
| |
Collapse
|
14
|
Fischer C, Gross S, Zeifang F, Schmidmaier G, Weber MA, Kunz P. Contrast-Enhanced Ultrasound Determines Supraspinatus Muscle Atrophy After Cuff Repair and Correlates to Functional Shoulder Outcome. Am J Sports Med 2018; 46:2735-2742. [PMID: 30080421 DOI: 10.1177/0363546518787266] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Muscle degeneration as a consequence of rotator cuff tears is mainly assessed by magnetic resonance imaging. Contrast-enhanced ultrasound (CEUS) is a new functional imaging method to assess microvascular perfusion as a fundamental parameter of muscle tissue vitality. In this cross-sectional study, the authors evaluated supraspinatus muscle perfusion after cuff repair and analyzed its association with functional shoulder outcome and the grade of echogenicity in B-mode ultrasound indicating fatty infiltration. HYPOTHESIS The authors expected reduced microperfusion of the operated versus the contralateral supraspinatus muscle and a correlation of the muscular microperfusion with functional shoulder outcome. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS Patients who received unilateral repair of the supraspinatus tendon between 2009 and 2014 were invited for a single follow-up examination. Functional scores were assessed, including the Constant-Murley score and American Shoulder and Elbow Surgeons score. CEUS examination was performed bilaterally in an oblique sagittal plane of the supraspinatus fossa. Perfusion was quantified by the parameters wash-in perfusion index (WiPI) and peak enhancement via VueBox quantification software. The results of the Constant-Murley score, American Shoulder and Elbow Surgeons score, and perfusion parameters were referenced to the contralateral shoulder. Echogenicity of the supraspinatus muscle was classified with a 3-point scale as compared with the trapezius muscle. RESULTS Sixty-seven patients were available, with a mean follow-up of 38.0 ± 18.5 months. Functional assessment showed impaired shoulder function on the operated shoulder as compared with the contralateral side (relative Constant Score [CS], 80% ± 19%). CEUS revealed diminished perfusion on the operated shoulder (WiPI, 55.1% ± 40.2%, P < .001). A strong correlation could be demonstrated between the perfusion deficit and functional impairment (relative WiPI and CS: rs = .644, P < .001). Higher grade of echogenicity in B-mode ultrasound was associated with reduced perfusion. CONCLUSION CEUS could visualize impaired supraspinatus muscle perfusion after rotator cuff repair as compared with the contralateral, healthy shoulder. With its ability to quantify microvascular perfusion as a surrogate parameter for muscle vitality and function, CEUS may serve as a quantitative method to evaluate rotator cuff muscles.
Collapse
Affiliation(s)
- Christian Fischer
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Heidelberg, Germany
| | - Sascha Gross
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Zeifang
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerhard Schmidmaier
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc-André Weber
- Institute of Diagnostic and Interventional Radiology, University Medical Center Rostock, Rostock, Germany
| | - Pierre Kunz
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, HTRG-Heidelberg Trauma Research Group, Heidelberg University Hospital, Heidelberg, Germany.,Shoulder and Elbow Surgery, Catholic Hospital Mainz, Mainz, Germany
| |
Collapse
|
15
|
Wang LL, Yin XF, Chu XC, Zhang YB, Gong XN. Platelet-derived growth factor subunit B is required for tendon-bone healing using bone marrow-derived mesenchymal stem cells after rotator cuff repair in rats. J Cell Biochem 2018; 119:8897-8908. [PMID: 30105826 DOI: 10.1002/jcb.27143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022]
Abstract
As a common cause of shoulder pain and disability, rotator cuff injury (RCI) represents a debilitating condition affecting an individual's quality of life. Although surgical repair has been shown to be somewhat effective, many patients may still suffer from reduced shoulder function. The aim of the current study was to identify a more effective mode of RCI treatment by investigating the effect of platelet-derived growth factor subunit B (PDGF-B) on tendon-bone healing after RCI repair by modifying bone marrow-derived mesenchymal stem cells (BMSCs). Surface markers of BMSCs were initially detected by means of flow cytometry, followed by establishment of the rat models and construction of the lentiviral vector. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, Thiazolyl Blue Tetrazolium Bromide (MTT) assay, alizarin red staining, and oil red O staining were used to provide verification that PDGF-B was indeed capable of promoting BMSC viability, osteogenic and adipogenic differentiation capability. Furthermore, biomechanical assessment results indicated that PDGF-B could increase the ultimate load and stiffness of the tendon tissue. Real-time reverse-transcription quantitative polymerase chain reaction and Western blot analysis methods provided evidence suggesting that PDGF-B facilitated the expression of tendon-bone healing-related genes and proteins, while contrasting results were obtained after PDGF-B silencing. Taken together, the key findings of the current study provided evidence suggesting that overexpressed PDGF-B could act to enhance tendon-bone healing after RCI repair, thus highlighting the potential of the functional promotion of PDGF-B as a future RCI therapeutic approach.
Collapse
Affiliation(s)
- Lin-Liang Wang
- Department of Joint Surgery, Dongying City People's Hospital, Dongying, China
| | - Xue-Feng Yin
- Department of Joint Surgery, Dongying City People's Hospital, Dongying, China
| | - Xiu-Cheng Chu
- Department of Joint Surgery, Dongying City People's Hospital, Dongying, China
| | - Yong-Bing Zhang
- Department of Joint Surgery, Dongying City People's Hospital, Dongying, China
| | - Xiao-Nan Gong
- Department of Joint Surgery, Dongying City People's Hospital, Dongying, China
| |
Collapse
|
16
|
Valencia AP, Lai JK, Iyer SR, Mistretta KL, Spangenburg EE, Davis DL, Lovering RM, Gilotra MN, Investigation performed at the Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA, and the Baltimore Veteran Affairs Medical Center, Baltimore, Maryland, USA. Fatty Infiltration Is a Prognostic Marker of Muscle Function After Rotator Cuff Tear. Am J Sports Med 2018; 46:2161-2169. [PMID: 29750541 PMCID: PMC6397750 DOI: 10.1177/0363546518769267] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Massive rotator cuff tears (RCTs) begin as primary tendon injuries and cause a myriad of changes in the muscle, including atrophy, fatty infiltration (FI), and fibrosis. However, it is unclear which changes are most closely associated with muscle function. PURPOSE To determine if FI of the supraspinatus muscle after acute RCT relates to short-term changes in muscle function. STUDY DESIGN Controlled laboratory study. METHODS Unilateral RCTs were induced in female rabbits via tenotomy of the supraspinatus and infraspinatus. Maximal isometric force and rate of fatigue were measured in the supraspinatus in vivo at 6 and 12 weeks after tenotomy. Computed tomography scanning was performed, followed by histologic analysis of myofiber size, FI, and fibrosis. RESULTS Tenotomy resulted in supraspinatus weakness, reduced myofiber size, FI, and fibrosis, but no differences were evident between 6 and 12 weeks after tenotomy except for increased collagen content at 12 weeks. FI was a predictor of supraspinatus weakness and was strongly correlated to force, even after accounting for muscle cross-sectional area. While muscle atrophy accounted for the loss in force in tenotomized muscles with minimal FI, it did not account for the greater loss in force in tenotomized muscles with the most FI. Collagen content was not strongly correlated with maximal isometric force, even when normalized to muscle size. CONCLUSION After RCT, muscle atrophy results in the loss of contractile force from the supraspinatus, but exacerbated weakness is observed with increased FI. Therefore, the level of FI can help predict contractile function of torn rotator cuff muscles. CLINICAL RELEVANCE Markers to predict contractile function of RCTs will help determine the appropriate treatment to improve functional recovery after RCTs.
Collapse
Affiliation(s)
- Ana P. Valencia
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Kinesiology, School of Public Health, University of Maryland, Baltimore, Maryland, USA
| | - Jim K. Lai
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Shama R. Iyer
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Katherine L. Mistretta
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Espen E. Spangenburg
- Department of Physiology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Derik L. Davis
- Department of Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Richard M. Lovering
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Mohit N. Gilotra
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Orthopaedics, Baltimore Veteran Affairs Medical Center, Baltimore, Maryland, USA
- Address correspondence to Mohit N. Gilotra, MD, Department of Orthopaedics, School of Medicine and VA Maryland Health Care System, University of Maryland, AHB, Rm 540, 100 Penn St, Baltimore, MD 21201, USA ()
| | | |
Collapse
|
17
|
Gibbons MC, Singh A, Engler AJ, Ward SR. The role of mechanobiology in progression of rotator cuff muscle atrophy and degeneration. J Orthop Res 2018; 36:546-556. [PMID: 28755470 PMCID: PMC5788743 DOI: 10.1002/jor.23662] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
Abstract
Rotator cuff (RC) muscles undergo several detrimental changes following mechanical unloading resulting from RC tendon tear. In this review, we highlight the pathological causes and consequences of mechanical alterations at the whole muscle, muscle fiber, and muscle resident cell level as they relate to RC disease progression. In brief, the altered mechanical loads associated with RC tear lead to architectural, structural, and compositional changes at the whole-muscle and muscle fiber level. At the cellular level, these changes equate to direct disruption of mechanobiological signaling, which is exacerbated by mechanically regulated biophysical and biochemical changes to the cellular and extra-cellular environment (also known as the stem cell "niche"). Together, these data have important implications for both pre-clinical models and clinical practice. In pre-clinical models, it is important to recapitulate both the atrophic and degenerative muscle loss found in humans using clinically relevant modes of injury. Clinically, understanding the mechanics and underlying biology of the muscle will impact both surgical decision-making and rehabilitation protocols, as interventions that may be good for atrophic muscle will have a detrimental effect on degenerating muscle, and vice versa. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:546-556, 2018.
Collapse
Affiliation(s)
| | | | - Adam J Engler
- University of California San Diego Department of Bioengineering
| | - Samuel R Ward
- University of California Department of Orthopedic Surgery,University of California Department of Radiology
| |
Collapse
|
18
|
Valencia AP, Iyer SR, Spangenburg EE, Gilotra MN, Lovering RM. Impaired contractile function of the supraspinatus in the acute period following a rotator cuff tear. BMC Musculoskelet Disord 2017; 18:436. [PMID: 29121906 PMCID: PMC5679320 DOI: 10.1186/s12891-017-1789-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/26/2017] [Indexed: 01/16/2023] Open
Abstract
Background Rotator cuff (RTC) tears are a common clinical problem resulting in adverse changes to the muscle, but there is limited information comparing histopathology to contractile function. This study assessed supraspinatus force and susceptibility to injury in the rat model of RTC tear, and compared these functional changes to histopathology of the muscle. Methods Unilateral RTC tears were induced in male rats via tenotomy of the supraspinatus and infraspinatus. Maximal tetanic force and susceptibility to injury of the supraspinatus muscle were measured in vivo at day 2 and day 15 after tenotomy. Supraspinatus muscles were weighed and harvested for histologic analysis of the neuromuscular junction (NMJ), intramuscular lipid, and collagen. Results Tenotomy resulted in eventual atrophy and weakness. Despite no loss in muscle mass at day 2 there was a 30% reduction in contractile force, and a decrease in NMJ continuity and size. Reduced force persisted at day 15, a time point when muscle atrophy was evident but NMJ morphology was restored. At day 15, torn muscles had decreased collagen-packing density and were also more susceptible to contraction-induced injury. Conclusion Muscle size and histopathology are not direct indicators of overall RTC contractile health. Changes in NMJ morphology and collagen organization were associated with changes in contractile function and thus may play a role in response to injury. Although our findings are limited to the acute phase after a RTC tear, the most salient finding is that RTC tenotomy results in increased susceptibility to injury of the supraspinatus.
Collapse
Affiliation(s)
- Ana P Valencia
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA.,Department of Kinesiology, University of Maryland School of Public Health, College Park, USA
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA
| | - Espen E Spangenburg
- Department of Physiology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, USA
| | - Mohit N Gilotra
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, AHB, Rm 540, 100 Penn St., Baltimore, MD, 21201, USA.
| |
Collapse
|
19
|
Mackey AL, Kjaer M. Connective tissue regeneration in skeletal muscle after eccentric contraction-induced injury. J Appl Physiol (1985) 2017; 122:533-540. [DOI: 10.1152/japplphysiol.00577.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 12/31/2022] Open
Abstract
Human skeletal muscle has the potential to regenerate completely after injury induced under controlled experimental conditions. The events inside the myofibers as they undergo necrosis, followed closely by satellite cell-mediated myogenesis, have been mapped in detail. Much less is known about the adaptation throughout this process of both the connective tissue structures surrounding the myofibers and the fibroblasts, the cells responsible for synthesizing this connective tissue. However, the few studies investigating muscle connective tissue remodeling demonstrate a strong response that appears to be sustained for a long time after the major myofiber responses have subsided. While the use of electrical stimulation to induce eccentric contractions vs. voluntary eccentric contractions appears to lead to a greater extent of myofiber necrosis and regenerative response, this difference is not apparent when the muscle connective tissue responses are compared, although further work is required to confirm this. Pharmacological agents (growth hormone and angiotensin II type I receptor blockers) are considered in the context of accelerating the muscle connective tissue adaptation to loading. Cautioning against this, however, is the association between muscle matrix protein remodeling and protection against reinjury, which suggests that a (so far undefined) period of vulnerability to reinjury may exist during the remodeling phases. The role of individual muscle matrix components and their spatial interaction during adaptation to eccentric contractions is an unexplored field in human skeletal muscle and may provide insight into the optimal timing of rest vs. return to activity after muscle injury.
Collapse
Affiliation(s)
- Abigail L. Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; and
- Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; and
| |
Collapse
|
20
|
Rothrauff BB, Pauyo T, Debski RE, Rodosky MW, Tuan RS, Musahl V. The Rotator Cuff Organ: Integrating Developmental Biology, Tissue Engineering, and Surgical Considerations to Treat Chronic Massive Rotator Cuff Tears. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:318-335. [PMID: 28084902 DOI: 10.1089/ten.teb.2016.0446] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The torn rotator cuff remains a persistent orthopedic challenge, with poor outcomes disproportionately associated with chronic, massive tears. Degenerative changes in the tissues that comprise the rotator cuff organ, including muscle, tendon, and bone, contribute to the poor healing capacity of chronic tears, resulting in poor function and an increased risk for repair failure. Tissue engineering strategies to augment rotator cuff repair have been developed in an effort to improve rotator cuff healing and have focused on three principal aims: (1) immediate mechanical augmentation of the surgical repair, (2) restoration of muscle quality and contractility, and (3) regeneration of native enthesis structure. Work in these areas will be reviewed in sequence, highlighting the relevant pathophysiology, developmental biology, and biomechanics, which must be considered when designing therapeutic applications. While the independent use of these strategies has shown promise, synergistic benefits may emerge from their combined application given the interdependence of the tissues that constitute the rotator cuff organ. Furthermore, controlled mobilization of augmented rotator cuff repairs during postoperative rehabilitation may provide mechanotransductive cues capable of guiding tissue regeneration and restoration of rotator cuff function. Present challenges and future possibilities will be identified, which if realized, may provide solutions to the vexing condition of chronic massive rotator cuff tears.
Collapse
Affiliation(s)
- Benjamin B Rothrauff
- 1 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Thierry Pauyo
- 3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Richard E Debski
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark W Rodosky
- 3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Rocky S Tuan
- 1 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Volker Musahl
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Orthopaedic Robotics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Gumucio JP, Flood MD, Bedi A, Kramer HF, Russell AJ, Mendias CL. Inhibition of prolyl 4-hydroxylase decreases muscle fibrosis following chronic rotator cuff tear. Bone Joint Res 2017; 6:57-65. [PMID: 28108482 PMCID: PMC5301902 DOI: 10.1302/2046-3758.61.bjr-2016-0232.r1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/21/2016] [Indexed: 11/16/2022] Open
Abstract
Objectives Rotator cuff tears are among the most frequent upper extremity injuries. Current treatment strategies do not address the poor quality of the muscle and tendon following chronic rotator cuff tears. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that activates many genes that are important in skeletal muscle regeneration. HIF-1α is inhibited under normal physiological conditions by the HIF prolyl 4-hydroxylases (PHDs). In this study, we used a pharmacological PHD inhibitor, GSK1120360A, to enhance the activity of HIF-1α following the repair of a chronic cuff tear, and measured muscle fibre contractility, fibrosis, gene expression, and enthesis mechanics. Methods Chronic supraspinatus tears were induced in adult rats, and repaired 28 days later. Rats received 0 mg/kg, 3 mg/kg, or 10 mg/kg GSK1120360A daily. Collagen content, contractility, fibre type distribution and size, the expression of genes involved in fibrosis, lipid accumulation, atrophy and inflammation, and the mechanical properties of the enthesis were then assessed two weeks following surgical repair. Results At two weeks following repair, treatment groups showed increased muscle mass but there was a 15% decrease in force production in the 10 mg/kg group from controls, and no difference between the 0 mg/kg and the 3 mg/kg groups. There was a decrease in the expression of several gene transcripts related to matrix accumulation and fibrosis, and a 50% decrease in collagen content in both treated groups compared with controls. Additionally, the expression of inflammatory genes was reduced in the treated groups compared with controls. Finally, PHD inhibition improved the maximum stress and displacement to failure in repaired tendons. Conclusions GSK1120360A resulted in improved enthesis mechanics with variable effects on muscle function. PHD inhibition may be beneficial for connective tissue injuries in which muscle atrophy has not occurred. Cite this article: J. P. Gumucio, M. D. Flood, A. Bedi, H. F. Kramer, A. J. Russell, C. L. Mendias. Inhibition of prolyl 4-hydroxylase decreases muscle fibrosis following chronic rotator cuff tear. Bone Joint Res 2017;6:57–65. DOI: 10.1302/2046-3758.61.BJR-2016-0232.R1.
Collapse
Affiliation(s)
- J P Gumucio
- Departments of Orthopaedic Surgery and Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - M D Flood
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - A Bedi
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - H F Kramer
- Muscle Metabolism DPU, GlaxoSmithKline Pharmaceuticals, Muscle Metabolism DPU, King of Prussia, Pennsylvania, USA
| | - A J Russell
- Muscle Metabolism DPU, GlaxoSmithKline Pharmaceuticals, Muscle Metabolism DPU, King of Prussia, Pennsylvania, USA
| | - C L Mendias
- Departments of Orthopaedic Surgery and Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Gasbarro G, Ye J, Newsome H, Jiang K, Wright V, Vyas D, Irrgang JJ, Musahl V. Morphologic Risk Factors in Predicting Symptomatic Structural Failure of Arthroscopic Rotator Cuff Repairs: Tear Size, Location, and Atrophy Matter. Arthroscopy 2016; 32:1947-1952. [PMID: 27129377 DOI: 10.1016/j.arthro.2016.01.067] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE To evaluate whether morphologic characteristics of rotator cuff tear have prognostic value in determining symptomatic structural failure of arthroscopic rotator cuff repair independent of age or gender. METHODS Arthroscopic rotator cuff repair cases performed by five fellowship-trained surgeons at our institution from 2006 to 2013 were retrospectively reviewed. Data extraction included demographics, comorbidities, repair technique, clinical examination, and radiographic findings. Failure in symptomatic patients was defined as structural defect on postoperative magnetic resonance imaging or pseudoparalysis on examination. Failures were age and gender matched with successful repairs in a 1:2 ratio. RESULTS A total of 30 failures and 60 controls were identified. Supraspinatus atrophy (P = .03) and tear size (18.3 mm failures v 13.9 mm controls; P = .02) were significant risk factors for failure, as was the presence of an infraspinatus tear greater than 10 mm (62% v 17%, P < .01). Single-row repair (P = .06) and simple suture configuration (P = .17) were more common but similar between groups. Diabetes mellitus and active tobacco use were not significantly associated with increased failure risk but psychiatric medication use was more frequent in the failure group. CONCLUSIONS This study confirms previous suspicions that tear size and fatty infiltration are associated with failure of arthroscopic rotator cuff repair but independent of age or gender in symptomatic patients. There is also a quantitative cutoff on magnetic resonance imaging for the size of infraspinatus involvement that can be used clinically as a predicting factor. Although reported in the literature, smoking and diabetes were not associated with failure. LEVEL OF EVIDENCE Level III, retrospective case control.
Collapse
Affiliation(s)
- Gregory Gasbarro
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, U.S.A
| | - Jason Ye
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, U.S.A
| | - Hillary Newsome
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, U.S.A
| | - Kevin Jiang
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, U.S.A
| | - Vonda Wright
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, U.S.A
| | - Dharmesh Vyas
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, U.S.A
| | - James J Irrgang
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, U.S.A
| | - Volker Musahl
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, U.S.A..
| |
Collapse
|
23
|
Wilde JM, Gumucio JP, Grekin JA, Sarver DC, Noah AC, Ruehlmann DG, Davis ME, Bedi A, Mendias CL. Inhibition of p38 mitogen-activated protein kinase signaling reduces fibrosis and lipid accumulation after rotator cuff repair. J Shoulder Elbow Surg 2016; 25:1501-8. [PMID: 27068389 PMCID: PMC4992438 DOI: 10.1016/j.jse.2016.01.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/16/2016] [Accepted: 01/22/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND The repair of rotator cuff tears is often complicated by fatty degeneration, which is the combination of lipid accumulation, fibrosis, inflammation, and muscle weakness. A signaling molecule that plays a central role in these processes is p38 mitogen-activated protein kinase (MAPK). The purpose of this study was to evaluate the ability of a small molecule inhibitor of p38 MAPK, SB203580, to reduce fatty degeneration in a preclinical model of rotator cuff injury and repair. MATERIALS AND METHODS Adult rats underwent a bilateral supraspinatus tenotomy that was repaired 30 days later. Rats were treated with SB203580 or vehicle every 2 days, with injections beginning 3 days before surgery and continuing until 7 days after surgery. Two weeks after surgical repair, muscles were analyzed using histology, lipid profiling, gene expression, and permeabilized muscle fiber contractility. RESULTS Inhibition of p38 MAPK resulted in a nearly 49% reduction in fat accumulation and a 29% reduction in collagen content, along with changes in corresponding genes regulating adipogenesis and matrix accumulation. There was also a marked 40% to 80% decrease in the expression of several proinflammatory genes, including IL1B, IL6, and COX2, and a 360% increase in the anti-inflammatory gene IL10. No differences were observed for muscle fiber force production. CONCLUSION Inhibition of p38 MAPK was found to result in a significant decrease in intramuscular lipid accumulation and fibrosis that is usually seen in the degenerative cascade of rotator cuff tears, without having negative effects on the contractile properties of the rotator cuff muscle tissue.
Collapse
Affiliation(s)
- Jeffrey M Wilde
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jonathan P Gumucio
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jeremy A Grekin
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dylan C Sarver
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew C Noah
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David G Ruehlmann
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Max E Davis
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Asheesh Bedi
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA,Corresponding Author: Christopher L. Mendias, PhD, ATC, Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, MI 48109-2200, USA,
| |
Collapse
|
24
|
Rui Y, Pan F, Mi J. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles. Anat Rec (Hoboken) 2016; 299:1397-401. [PMID: 27314819 DOI: 10.1002/ar.23384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/26/2022]
Abstract
The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yongjun Rui
- Department of Hand Surgery, Wuxi Number 9 People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu Province 214062, the People's Republic of China.
| | | | - Jingyi Mi
- Department of Hand Surgery, Wuxi Number 9 People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu Province 214062, the People's Republic of China
| |
Collapse
|
25
|
Developmental Biology and Regenerative Medicine: Addressing the Vexing Problem of Persistent Muscle Atrophy in the Chronically Torn Human Rotator Cuff. Phys Ther 2016; 96:722-33. [PMID: 26847008 PMCID: PMC4858662 DOI: 10.2522/ptj.20150029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/24/2016] [Indexed: 12/18/2022]
Abstract
Persistent muscle atrophy in the chronically torn rotator cuff is a significant obstacle for treatment and recovery. Large atrophic changes are predictive of poor surgical and nonsurgical outcomes and frequently fail to resolve even following functional restoration of loading and rehabilitation. New insights into the processes of muscle atrophy and recovery gained through studies in developmental biology combined with the novel tools and strategies emerging in regenerative medicine provide new avenues to combat the vexing problem of muscle atrophy in the rotator cuff. Moving these treatment strategies forward likely will involve the combination of surgery, biologic/cellular agents, and physical interventions, as increasing experimental evidence points to the beneficial interaction between biologic therapies and physiologic stresses. Thus, the physical therapy profession is poised to play a significant role in defining the success of these combinatorial therapies. This perspective article will provide an overview of the developmental biology and regenerative medicine strategies currently under investigation to combat muscle atrophy and how they may integrate into the current and future practice of physical therapy.
Collapse
|
26
|
Sambandam SN, Khanna V, Gul A, Mounasamy V. Rotator cuff tears: An evidence based approach. World J Orthop 2015; 6:902-918. [PMID: 26716086 PMCID: PMC4686437 DOI: 10.5312/wjo.v6.i11.902] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/04/2015] [Accepted: 10/19/2015] [Indexed: 02/06/2023] Open
Abstract
Lesions of the rotator cuff (RC) are a common occurrence affecting millions of people across all parts of the globe. RC tears are also rampantly prevalent with an age-dependent increase in numbers. Other associated factors include a history of trauma, limb dominance, contralateral shoulder, smoking-status, hypercholesterolemia, posture and occupational dispositions. The challenge lies in early diagnosis since a high proportion of patients are asymptomatic. Pain and decreasing shoulder power and function should alert the heedful practitioner in recognizing promptly the onset or aggravation of existing RC tears. Partial-thickness tears (PTT) can be bursal-sided or articular-sided tears. Over the course of time, PTT enlarge and propagate into full-thickness tears (FTT) and develop distinct chronic pathological changes due to muscle retraction, fatty infiltration and muscle atrophy. These lead to a reduction in tendon elasticity and viability. Eventually, the glenohumeral joint experiences a series of degenerative alterations - cuff tear arthropathy. To avert this, a vigilant clinician must utilize and corroborate clinical skill and radiological findings to identify tear progression. Modern radio-diagnostic means of ultrasonography and magnetic resonance imaging provide excellent visualization of structural details and are crucial in determining further course of action for these patients. Physical therapy along with activity modifications, anti-inflammatory and analgesic medications form the pillars of nonoperative treatment. Elderly patients with minimal functional demands can be managed conservatively and reassessed at frequent intervals. Regular monitoring helps in isolating patients who require surgical interventions. Early surgery should be considered in younger, active and symptomatic, healthy patients. In addition to being cost-effective, this helps in providing a functional shoulder with a stable cuff. An easily reproducible technique of maximal strength and sturdiness should by chosen among the armamentarium of the shoulder surgeon. Grade 1 PTTs do well with debridement while more severe lesions mandate repair either by trans-tendon technique or repair following conversion into FTT. Early repair of repairable FTT can avoid appearance and progression of disability and weakness. The choice of surgery varies from surgeon-to-surgeon with arthroscopy taking the lead in the current scenario. The double-row repairs have an edge over the single-row technique in some patients especially those with massive tears. Stronger, cost-effective and improved functional scores can be obtained by the former. Both early and delayed postoperative rehabilitation programmes have led to comparable outcomes. Guarded results may be anticipated in patients in extremes of age, presence of comorbidities and severe tear patters. Overall, satisfactory results are obtained with timely diagnosis and execution of the appropriate treatment modality.
Collapse
|
27
|
Gumucio JP, Flood MD, Roche SM, Sugg KB, Momoh AO, Kosnik PE, Bedi A, Mendias CL. Stromal vascular stem cell treatment decreases muscle fibrosis following chronic rotator cuff tear. INTERNATIONAL ORTHOPAEDICS 2015. [PMID: 26224616 DOI: 10.1007/s00264-015-2937-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Rotator cuff injuries are associated with atrophy and fat infiltration into the muscle, commonly referred to as "fatty degeneration." As the poor function of chronically torn muscles may limit recovery after surgical repair, there is considerable interest in finding therapies to enhance muscle regeneration. Stromal vascular fraction stem cells (SVFCs) can improve muscle regeneration in other chronic injury states, and our objective was to evaluate the ability of SVFCs to reduce fibrosis and fat accumulation, and enhance muscle fibre specific force production after chronic rotator cuff tear. METHODS Chronic supraspinatus tears were induced in adult immunodeficient rats, and repaired one month following tear. Rats received vehicle control, or injections of 3 × 10(5) or 3 × 10(6) human SVFCs into supraspinatus muscles. RESULTS Two weeks following repair, we detected donor human DNA and protein in SVFC treated muscles. There was a 40 % reduction in fibrosis in the treated groups compared to controls (p = 0.03 for 3 × 10(5), p = 0.04 for 3 × 10(6)), and no differences between groups for lipid content or force production were observed. CONCLUSIONS As there has been much interest in the use of stem cell-based therapies in musculoskeletal regenerative medicine, the reduction in fibrosis and trend towards an improvement in single fiber contractility suggest that SVFCs may be beneficial to enhance the treatment and recovery of patients with chronic rotator cuff tears.
Collapse
Affiliation(s)
- Jonathan P Gumucio
- Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, MI, 48109-2200, USA.,Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael D Flood
- Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, MI, 48109-2200, USA
| | - Stuart M Roche
- Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, MI, 48109-2200, USA
| | - Kristoffer B Sugg
- Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, MI, 48109-2200, USA.,Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Surgery, Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Adeyiza O Momoh
- Department of Surgery, Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Asheesh Bedi
- Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, MI, 48109-2200, USA
| | - Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, MI, 48109-2200, USA. .,Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
28
|
Associations between in-vivo glenohumeral joint motion and morphology. J Biomech 2015; 48:3252-7. [PMID: 26189094 DOI: 10.1016/j.jbiomech.2015.06.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/22/2015] [Accepted: 06/27/2015] [Indexed: 12/26/2022]
Abstract
Joint morphology has a significant influence on joint motion and may contribute to the development of rotator cuff pathology, but the relationships between glenohumeral joint (GHJ) morphology and in-vivo GHJ motion are not well understood. The objectives of this study were to assess measures of joint morphology and their relationship with in-vivo joint motion in two populations: shoulders with intact rotator cuffs (n=48) and shoulders with rotator cuff pathology (n=36, including 5 symptomatic tears, 9 asymptomatic tears and 22 repaired tears). GHJ morphology was measured from CT-based three-dimensional models of the humerus and scapula. In-vivo GHJ motion was measured during shoulder abduction using biplane x-ray imaging. Associations between GHJ morphology and motion were assessed with univariate and best subsets regression. The only morphological difference identified between the populations was the critical shoulder angle (intact: 34.5 ± 4.7°, pathologic: 36.9 ± 5.0°, p=0.03), which is consistent with previous research. In intact shoulders, the superior/inferior (S/I) position of the humerus on the glenoid during shoulder abduction was significantly associated with the glenoid's S/I radius of curvature (p<0.01), conformity index (p<0.01), and stability angle (p<0.01). Furthermore, the S/I position of the humerus on the glenoid was negatively associated with the critical shoulder angle (p=0.04), which contradicts previous research. No significant associations between GHJ morphology and GHJ motion were detected in shoulders with rotator cuff tears. It is unknown if rotator cuff pathology compromises the relationships between GHJ morphology and motion, or if the absence of this relationship is a pre-existing condition that increases the likelihood of pathology.
Collapse
|
29
|
Luan T, Liu X, Easley JT, Ravishankar B, Puttlitz C, Feeley BT. Muscle atrophy and fatty infiltration after an acute rotator cuff repair in a sheep model. Muscles Ligaments Tendons J 2015; 5:106-112. [PMID: 26261789 PMCID: PMC4496009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
INTRODUCTION rotator cuff tears (RCTs) are the most common tendon injury seen in orthopedic patients. Muscle atrophy and fatty infiltration of the muscle are crucial factors that dictate the outcome following rotator cuff surgery. Though less studied in humans, rotator cuff muscle fibrosis has been seen in animal models as well and may influence outcomes as well. The purpose of this study was to determine if the rotator cuff would develop muscle changes even in the setting of an acute repair in a sheep model. We hypothesized that fatty infiltration and fibrosis would be present even after an acute repair six months after initial surgery. METHODS twelve female adult sheep underwent an acute rotator cuff tear and immediate repair on the right shoulder. The left shoulder served as a control and did not undergo a tear or a repair. Six months following acute rotator cuff repairs, sheep muscles were harvested to study atrophy, fatty infiltration, and fibrosis by histological analysis, western blotting, and reverse transcription polymerase chain reaction (RT-PCR). RESULTS the repair group demonstrated an increase expression of muscle atrophy, fatty infiltration, and fibrosis related genes. Significantly increased adipocytes, muscle fatty infiltration, and collagen deposition was observed in rotator cuff muscles in the tendon repair group compared to the control group. CONCLUSIONS rotator cuff muscle undergoes degradation changes including fatty infiltration and fibrosis even after the tendons are repair immediately after rupture. LEVEL OF EVIDENCE Basic Science Study.
Collapse
Affiliation(s)
- Tammy Luan
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Xuhui Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, United States
| | | | - Bharat Ravishankar
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, United States
| | | | - Brian T. Feeley
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, United States
| |
Collapse
|