1
|
Velloso CCV, Lopes MM, Badino AC, Farinas CS. Exploring the roles of starch for microbial encapsulation through a systematic mapping review. Carbohydr Polym 2023; 306:120574. [PMID: 36746565 DOI: 10.1016/j.carbpol.2023.120574] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Microorganism encapsulation protects them from stressful conditions and assists in maintaining their viability, being especially beneficial when the carrier material is a renewable and biodegradable biopolymer, such as starch. Here, a systematic mapping was performed to provide a current overview on the use of starch-based systems for microbial encapsulation. Following well-established guidelines, a systematic mapping was conducted and the following could be drawn: 1) there was a significant increase in publications on microbial encapsulation using starch over the past decade, showing interest from the scientific community, 2) ionotropic gelation, emulsification and spray drying are the most commonly used techniques for starch-based microbial encapsulation, and 3) starch play important functions in the encapsulation matrix such as assisting in the survival of the microorganisms. The information gathered in this systematic mapping can be useful to guide researchers and industrial sectors on the development of innovative starch-based systems for microbial encapsulation.
Collapse
Affiliation(s)
- Camila C V Velloso
- Embrapa Instrumentation, Rua XV de Novembro, 1452, São Carlos, SP 13560-970, Brazil; Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Marina M Lopes
- Embrapa Instrumentation, Rua XV de Novembro, 1452, São Carlos, SP 13560-970, Brazil; Graduate Program of Biotechnology, Federal University of São Carlos, São Carlos, SP 13560-000, Brazil
| | - Alberto C Badino
- Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil.
| | - Cristiane S Farinas
- Embrapa Instrumentation, Rua XV de Novembro, 1452, São Carlos, SP 13560-970, Brazil; Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil; Graduate Program of Biotechnology, Federal University of São Carlos, São Carlos, SP 13560-000, Brazil.
| |
Collapse
|
2
|
Laothamteep N, Naloka K, Pinyakong O. Bioaugmentation with zeolite-immobilized bacterial consortium OPK results in a bacterial community shift and enhances the bioremediation of crude oil-polluted marine sandy soil microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118309. [PMID: 34626709 DOI: 10.1016/j.envpol.2021.118309] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
A pyrene-degrading consortium OPK containing Mycolicibacterium strains PO1 and PO2, Novosphingobium pentaromativorans PY1 and Bacillus subtilis FW1 effectively biodegraded medium- and long-chain alkanes as well as mixed hydrocarbons in crude oil. The detection of alkB and CYP153 genes in the genome of OPK members supports its phenotypic ability to effectively degrade a broad range of saturated hydrocarbons in crude oil. Zeolite-immobilized OPK was developed as a ready-to-use bioproduct and it exhibited 74% removal of 1000 mg L-1 crude oil within 96 h in sterilized seawater without nutrient supplementation and maintained high crude oil-removal activity under a broad range of pH values (5.0-9.0), temperatures (30-40 °C) and salinities (20-60‰). In addition, the immobilized OPK retained a high crude oil removal efficacy in semicontinuous experiments and showed reusability for at least 5 cycles. Remarkably, bioaugmentation with zeolite-immobilized OPK in sandy soil microcosms significantly increased crude oil (10,000 mg kg-1 soil) removal from 45% to 80.67% within 21 days compared to biostimulation and natural attenuation. Moreover, bioaugmentation with exogenous immobilized OPK stimulated an increase in the relative abundances of Alcanivorax genus, indigenous hydrocarbon-degrading bacteria, which in turn enhanced removal efficiency of crude oil contamination from sandy soil microcosms. The results indicate positive interactions between the bioaugmented immobilized consortium, harboring Mycolicibacterium as a key player, and indigenous Alcanivorax, which exhibited crucial functions for improving crude oil removal efficacy. The knowledge obtained forms an important basis for further synthesis and handling of a promising bio-based product for enhancing the in situ bioremediation of crude oil-polluted marine environments.
Collapse
Affiliation(s)
- Natthariga Laothamteep
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Kallayanee Naloka
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Onruthai Pinyakong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand; Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Naloka K, Polrit D, Muangchinda C, Thoetkiattikul H, Pinyakong O. Bioballs carrying a syntrophic Rhodococcus and Mycolicibacterium consortium for simultaneous sorption and biodegradation of fuel oil in contaminated freshwater. CHEMOSPHERE 2021; 282:130973. [PMID: 34091296 DOI: 10.1016/j.chemosphere.2021.130973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/14/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Nonpathogenic effective bacterial hydrocarbon degraders, Rhodococcus ruber S103, Mycolicibacterium parafortuitum J101 and Mycolicibacterium austroafricanum Y502, were isolated from mixed polycyclic aromatic hydrocarbon (PAH)-enriched river sediments. They possessed broad substrate specificities toward various PAHs and aliphatic compounds as sole carbon sources. These strains exhibited promising characteristics, including biosurfactant production, high cell hydrophobicity, biofilm formation and no antagonistic interactions, and contained genes encoding hydrocarbon-degrading enzymes. The mixed bacterial consortium combining S103, J101 and Y502, showed more effective syntrophic degradation of two types of refined petroleum products, diesel and fuel oils, than monocultures. The defined consortium immobilized on plastic balls achieved over 50% removal efficiency of high fuel oil concentration (3000 mg L-1) in a synthetic medium and contaminated freshwater. Furthermore, the immobilized cells simultaneously degraded more than 46% of total fuel oil adsorbed on plastic balls in both culture systems. SEM imaging confirmed that the immobilized consortium exhibited biofilm formation with the bacterial community covering most of the bioball surface, resulting in high bacterial survival against toxic contaminants. The results of this study showed the potential use of the cooperative interaction between Rhodococcus and Mycolicibacterium as immobilized bioballs for the bioremediation of fuel oil-contaminated environments. Additionally, this research has motivated further investigations into the development of bioremediation products for fuel oil degradation.
Collapse
Affiliation(s)
- Kallayanee Naloka
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Duangporn Polrit
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chanokporn Muangchinda
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Honglada Thoetkiattikul
- Technology Management Center, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Onruthai Pinyakong
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Golubev SN, Muratova AY, Panchenko LV, Shchyogolev SY, Turkovskaya OV. Mycolicibacterium sp. strain PAM1, an alfalfa rhizosphere dweller, catabolizes PAHs and promotes partner-plant growth. Microbiol Res 2021; 253:126885. [PMID: 34624611 DOI: 10.1016/j.micres.2021.126885] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
This research was focused on the isolation and characterization of a PAH-catabolizing mycobacterial strain from the petroleum hydrocarbon-contaminated rhizosphere of alfalfa, as well as on revealing some points of interaction between the microorganism and the plant. Mycolicibacterium sp. PAM1, a pyrene degrader isolated from the niche of interest to us, can catabolize fluoranthene, anthracene, fluorene, and phenanthrene. On the basis of curves of PAM1 growth with different PAHs as the sole carbon sources and on the basis of PAH-degradation rates, we found that pollutant availability to the strain decreased in the sequence phenanthrene > fluorene > fluoranthene ∼ pyrene > anthracene. For each PAH, the catabolic products were identified. PAM1 was found to have the functional genes nidA and nidB. New data modeling the 2D and 3D structures, intrinsic structural disorder, and molecular dynamics of the nidA and nidB gene products were obtained. The identified genes and intermediates of pyrene degradation indicate that PAM1 has a PAH catabolic pathway that is peculiar to known mycobacterial pyrene degraders. PAM1 utilized some components of alfalfa root exudates as nutrients and promoted plant growth. The use of mycobacterial partners of alfalfa is attractive for enhancing the phytoremediation of PAH-contaminated soils.
Collapse
Affiliation(s)
- Sergey N Golubev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation.
| | - Anna Yu Muratova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
| | - Leonid V Panchenko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
| | - Sergey Yu Shchyogolev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
| | - Olga V Turkovskaya
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russian Federation
| |
Collapse
|
5
|
Structural enterocin gene profiles and mode of antilisterial activity in synthetic liquid media and skim milk of autochthonous Enterococcus spp. isolates from artisan Greek Graviera and Galotyri cheeses. Food Microbiol 2020; 86:103335. [DOI: 10.1016/j.fm.2019.103335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/28/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022]
|
6
|
Vandera E, Kakouri A, Koukkou AI, Samelis J. Major ecological shifts within the dominant nonstarter lactic acid bacteria in mature Greek Graviera cheese as affected by the starter culture type. Int J Food Microbiol 2019; 290:15-26. [DOI: 10.1016/j.ijfoodmicro.2018.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/27/2018] [Accepted: 09/16/2018] [Indexed: 11/25/2022]
|
7
|
Kim DW, Lee K, Lee DH, Cha CJ. Comparative genomic analysis of pyrene-degrading Mycobacterium species: Genomic islands and ring-hydroxylating dioxygenases involved in pyrene degradation. J Microbiol 2018; 56:798-804. [DOI: 10.1007/s12275-018-8372-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
|
8
|
Muangchinda C, Chamcheun C, Sawatsing R, Pinyakong O. Diesel oil removal by Serratia sp. W4-01 immobilized in chitosan-activated carbon beads. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26927-26938. [PMID: 30008160 DOI: 10.1007/s11356-018-2742-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/09/2018] [Indexed: 04/16/2023]
Abstract
Serratia sp. W4-01 was immobilized in chitosan-activated carbon beads and used for diesel oil removal. The type and concentration of chitosan, activated carbon content, and bead diameter were investigated as factors affecting diesel oil removal. The results showed that 2% (w/v) squid pen chitosan beads modified with 1% activated carbon (w/v) and with a 3-mm diameter had a good spherical shape and strength as well as diesel oil removal capability. The immobilized W4-01 cells removed more than 40% of diesel oil after 7 days when the initial diesel oil concentration was 100 to 400 mg L-1, whereas 29-36% of diesel oil was removed after 14 days when the initial concentration was 800 to 1000 mg L-1. Additionally, the immobilized cells maintained the ability to remove diesel oil over a pH range of 5-11. The addition of a biosurfactant increased the diesel oil removal from 62 to 75%. The reusability tests revealed that the ability of immobilized cells to remove diesel oil was enhanced after reuse, and 50-90% of diesel oil was removed during 2 to 12 reuse cycles. The stability and survival of W4-01 cells was confirmed by scanning electron microscopy and confocal laser scanning microscopy. The results of this study showed the potential use of W4-01 cells immobilized in chitosan-activated carbon beads for future applications in remediating diesel contamination.
Collapse
Affiliation(s)
- Chanokporn Muangchinda
- Microbial Technology for Marine Pollution Treatment Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chalinee Chamcheun
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Rajitpitch Sawatsing
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Onruthai Pinyakong
- Microbial Technology for Marine Pollution Treatment Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Brzeszcz J, Kaszycki P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility. Biodegradation 2018; 29:359-407. [PMID: 29948519 DOI: 10.1007/s10532-018-9837-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
Environmental pollution with petroleum toxic products has afflicted various ecosystems, causing devastating damage to natural habitats with serious economic implications. Some crude oil components may serve as growth substrates for microorganisms. A number of bacterial strains reveal metabolic capacities to biotransform various organic compounds. Some of the hydrocarbon degraders are highly biochemically specialized, while the others display a versatile metabolism and can utilize both saturated aliphatic and aromatic hydrocarbons. The extended catabolic profiles of the latter group have been subjected to systematic and complex studies relatively rarely thus far. Growing evidence shows that numerous bacteria produce broad biochemical activities towards different hydrocarbon types and such an enhanced metabolic potential can be found in many more species than the already well-known oil-degraders. These strains may play an important role in the removal of heterogeneous contamination. They are thus considered to be a promising solution in bioremediation applications. The main purpose of this article is to provide an overview of the current knowledge on aerobic bacteria involved in the mineralization or transformation of both n-alkanes and aromatic hydrocarbons. Variant scientific approaches enabling to evaluate these features on biochemical as well as genetic levels are presented. The distribution of multidegradative capabilities between bacterial taxa is systematically shown and the possibility of simultaneous transformation of complex hydrocarbon mixtures is discussed. Bioinformatic analysis of the currently available genetic data is employed to enable generation of phylogenetic relationships between environmental strain isolates belonging to the phyla Actinobacteria, Proteobacteria, and Firmicutes. The study proves that the co-occurrence of genes responsible for concomitant metabolic bioconversion reactions of structurally-diverse hydrocarbons is not unique among various systematic groups.
Collapse
Affiliation(s)
- Joanna Brzeszcz
- Department of Microbiology, Oil and Gas Institute-National Research Institute, ul. Lubicz 25A, 31-503, Kraków, Poland.
| | - Paweł Kaszycki
- Unit of Biochemistry, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, al. 29 Listopada 54, 31-425, Kraków, Poland
| |
Collapse
|
10
|
Parapouli M, Foukis A, Stergiou PY, Koukouritaki M, Magklaras P, Gkini OA, Papamichael EM, Afendra AS, Hatziloukas E. Molecular, biochemical and kinetic analysis of a novel, thermostable lipase (LipSm) from Stenotrophomonas maltophilia Psi-1, the first member of a new bacterial lipase family (XVIII). ACTA ACUST UNITED AC 2018; 25:4. [PMID: 29456971 PMCID: PMC5806266 DOI: 10.1186/s40709-018-0074-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 01/27/2018] [Indexed: 11/10/2022]
Abstract
Background Microbial lipases catalyze a broad spectrum of reactions and are enzymes of considerable biotechnological interest. The focus of this study was the isolation of new lipase genes, intending to discover novel lipases whose products bear interesting biochemical and structural features and may have a potential to act as valuable biocatalysts in industrial applications. Results A novel lipase gene (lipSm), from a new environmental Stenotrophomonas maltophilia strain, Psi-1, originating from a sludge sample from Psittaleia (Greece), was cloned and sequenced. lipSm was further overexpressed in E. coli BL21(DE3) and the overproduced enzyme LipSm was purified and analyzed in respect to its biochemical and kinetic properties. In silico analysis of LipSm revealed that it is taxonomically related to several uncharacterized lipases from different genera, which constitute a unique clade, markedly different from all other previously described bacterial lipase families. All members of this clade displayed identical, conserved consensus sequence motifs, i.e. the catalytic triad (S, D, H), and an unusual, amongst bacterial lipases, Y-type oxyanion hole. 3D-modeling revealed the presence of a lid domain structure, which allows LipSm to act on small ester substrates without interfacial activation. In addition, the high percentage of alanine residues along with the occurrence of the AXXXA motif nine times in LipSm suggest that it is a thermostable lipase, a feature verified experimentally, since LipSm was still active after heating at 70 °C for 30 min. Conclusions The phylogenetic analysis of LipSm suggests the establishment of a new bacterial lipase family (XVIII) with LipSm being its first characterized member. Furthermore, LipSm is alkaliphilic, thermostable and lacks the requirement for interfacial activation, when small substrates are used. These properties make LipSm a potential advantageous biocatalyst in industry and biotechnology.
Collapse
Affiliation(s)
- Maria Parapouli
- 1Enzyme Biotechnology and Genetic Engineering Group, University of Ioannina, 451 10 Ioannina, Greece
| | - Athanasios Foukis
- 1Enzyme Biotechnology and Genetic Engineering Group, University of Ioannina, 451 10 Ioannina, Greece
| | | | - Maria Koukouritaki
- 1Enzyme Biotechnology and Genetic Engineering Group, University of Ioannina, 451 10 Ioannina, Greece
| | - Panagiotis Magklaras
- 1Enzyme Biotechnology and Genetic Engineering Group, University of Ioannina, 451 10 Ioannina, Greece
| | - Olga A Gkini
- 1Enzyme Biotechnology and Genetic Engineering Group, University of Ioannina, 451 10 Ioannina, Greece
| | - Emmanuel M Papamichael
- 1Enzyme Biotechnology and Genetic Engineering Group, University of Ioannina, 451 10 Ioannina, Greece
| | - Amalia-Sofia Afendra
- 1Enzyme Biotechnology and Genetic Engineering Group, University of Ioannina, 451 10 Ioannina, Greece
| | - Efstathios Hatziloukas
- 1Enzyme Biotechnology and Genetic Engineering Group, University of Ioannina, 451 10 Ioannina, Greece.,2Department of Biological Applications & Technologies, University of Ioannina, University Campus, 451 10 Ioannina, Greece
| |
Collapse
|
11
|
Vandera E, Lianou A, Kakouri A, Feng J, Koukkou AI, Samelis J. Enhanced Control of Listeria monocytogenes by Enterococcus faecium KE82, a Multiple Enterocin-Producing Strain, in Different Milk Environments. J Food Prot 2017; 80:74-85. [PMID: 28221890 DOI: 10.4315/0362-028x.jfp-16-082] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enterococcus faecium KE82, isolated from traditional Greek Graviera cheese, was identified in pure broth cultures in vitro as a multiple enterocin-producing bacterial strain possessing the structural entA, entB, and entP enterocin genes. E. faecium KE82 was further assessed for in situ antilisterial activity in raw milk (RM) and commercially thermized milk (TM; 63°C for 30 s) in the presence of the indigenous microbiota and in sterile raw milk (SRM; 121°C for 5 min) with or without the addition of two commercial starter culture (CSC) strains Streptococcus thermophilus and Lactococcus lactis . Growth of Listeria monocytogenes was completely inhibited in RM incubated at 37°C for 6 h, whereas the pathogen was significantly inactivated in RM+KE82 samples during further incubation at 18°C for 66 h. In contrast, L. monocytogenes levels increased by approximately 2 log CFU/ml in TM, but in TM+KE82 samples, pathogen growth was retarded during the first 6 h at 37°C followed by growth cessation and partial inactivation at 18°C. After 48 to 72 h, growth of L. monocytogenes in SRM+CSC samples decreased by 4 to 5 log CFU/ml compared with the SRM control, whereas additional 10-fold decreases in the pathogen were observed in SRM+CSC+KE82 samples. Reverse transcription PCR analysis of SRM+KE82 and SRM+CSC+KE82 samples confirmed that the entA and entB genes were transcribed, but entP gene transcription was not detected. All RM and SRM samples inoculated with E. faecium KE82 displayed strong in situ inhibitory activity against L. monocytogenes in well diffusion bioassays, whereas activity was weaker to undetectable in comparable or additional TM+KE82 samples; no milk sample without E. faecium KE82 had activity against L. monocytogenes . The findings of this study indicate that E. faecium KE82 is an antilisterial agent that could be used in traditional dairy foods because it concomitantly produces enterocins A and B in situ in milk.
Collapse
Affiliation(s)
- Elpiniki Vandera
- Dairy Research Institute, General Directorate of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece.,Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45100 Ioannina, Greece
| | - Alexandra Lianou
- Dairy Research Institute, General Directorate of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece
| | - Athanasia Kakouri
- Dairy Research Institute, General Directorate of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece
| | - Jinbo Feng
- Dairy Research Institute, General Directorate of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece.,Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45100 Ioannina, Greece
| | - Anna-Irini Koukkou
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45100 Ioannina, Greece
| | - John Samelis
- Dairy Research Institute, General Directorate of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece
| |
Collapse
|
12
|
Enhancing productivity for cascade biotransformation of styrene to (S)-vicinal diol with biphasic system in hollow fiber membrane bioreactor. Appl Microbiol Biotechnol 2016; 101:1857-1868. [DOI: 10.1007/s00253-016-7954-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 11/27/2022]
|
13
|
Guo M, Gong Z, Allinson G, Tai P, Miao R, Li X, Jia C, Zhuang J. Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation. CHEMOSPHERE 2016; 144:1513-20. [PMID: 26498099 DOI: 10.1016/j.chemosphere.2015.10.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 05/15/2023]
Abstract
The aim of this study was to demonstrate the variations in bioavailability remaining in industrial and agricultural soils contaminated by polycyclic aromatic hydrocarbons (PAHs) after bioremediation. After inoculation of Mycobacterium sp. and Mucor sp., PAH biodegradation was tested on a manufactured gas plant (MGP) soil and an agricultural soil. PAH bioavailability was assessed before and after biodegradation using solid-phase extraction (Tenax-TA extraction) and solid-phase micro-extraction (SPME) to represent bioaccessibility and chemical activity of PAHs, respectively. Only 3- and 4-ring PAHs were noticeably biodegradable in the MGP soil. PAH biodegradation in the agricultural soil was different from that in the MGP soil. The rapidly desorbing fractions (F(rap)) extracted by Tenax-TA and the freely dissolved concentrations of 3- and 4-ring PAHs determined by SPME from the MGP soil decreased after 30 days biodegradation; those values of the 5- and 6-ring PAHs changed to a lesser degree. For the agricultural soil, the F(rap) values of the 3- and 4-ring PAHs also decreased after the biodegradation experiment. The Tenax-TA extraction and the SPME have the potential to assess variations in the bioavailability of PAHs and the degree of biodegradation in contaminated MGP soils. In addition, Tenax-TA extraction is more sensitive than SPME when used in the agricultural soil.
Collapse
Affiliation(s)
- Meixia Guo
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Graeme Allinson
- School of Applied Sciences, RMIT University, Melbourne, Victoria, 3001, Australia; Centre for Environmental Sustainability and Remediation (EnSuRE), RMIT University, Melbourne, Victoria, 3001, Australia
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China
| | - Renhui Miao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China
| | - Chunyun Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China
| | - Jie Zhuang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China
| |
Collapse
|
14
|
Nopcharoenkul W, Netsakulnee P, Pinyakong O. Diesel oil removal by immobilized Pseudoxanthomonas sp. RN402. Biodegradation 2012; 24:387-97. [PMID: 23054183 DOI: 10.1007/s10532-012-9596-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 09/20/2012] [Indexed: 11/26/2022]
Abstract
Pseudoxanthomonas sp. RN402 was capable of degrading diesel, crude oil, n-tetradecane and n-hexadecane. The RN402 cells were immobilized on the surface of high-density polyethylene plastic pellets at a maximum cell density of 10(8) most probable number (MPN) g(-1) of plastic pellets. The immobilized cells not only showed a higher efficacy of diesel oil removal than free cells but could also degrade higher concentrations of diesel oil. The rate of diesel oil removal by immobilized RN402 cells in liquid culture was 1,050 mg l(-1) day(-1). Moreover, the immobilized cells could maintain high efficacy and viability throughout 70 cycles of bioremedial treatment of diesel-contaminated water. The stability of diesel oil degradation in the immobilized cells resulted from the ability of living RN402 cells to attach to material surfaces by biofilm formation, as was shown by CLSM imaging. These characteristics of the immobilized RN402 cells, including high degradative efficacy, stability and flotation, make them suitable for the purpose of continuous wastewater bioremediation.
Collapse
Affiliation(s)
- Wannarak Nopcharoenkul
- Inter-Department of Environmental Science, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
15
|
Zhang C, Anderson AJ. Utilization of pyrene and benzoate in Mycobacterium isolate KMS is regulated differentially by catabolic repression. J Basic Microbiol 2012; 53:81-92. [PMID: 22733411 DOI: 10.1002/jobm.201100480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 01/07/2012] [Indexed: 12/21/2022]
Abstract
The soil isolate, Mycobacterium sp. strain KMS, utilizes an array of carbon compounds including the aromatics benzoate and pyrene as sole carbon sources. Growth on pyrene induced both chromosomal and plasmid nidA genes encoding pyrene ring-hydroxylating dioxygenase α-subunits for pyrene oxidation. Diauxic growth occurred when KMS was cultured with pyrene plus either acetate, succinate, fructose, or benzoate and nidA expression only was detected in the second slower log-phase period. Potential cAMP-CRP binding sites exist within the promoter region of both nidA genes indicating that cAMP-CRP may be involved in catabolite repression of pyrene utilization. When cultured with benzoate plus either acetate, succinate, or fructose, there was no diauxic growth. Also there was no diauxic growth on fructose plus succinate or acetate. Expression of a benA gene, encoding a benzoate dioxygenase α-subunit involved in the initiation of benzoate oxidation, was detected in log-phase cells from the benzoate-mixed substrate cultures at the same level as when the cells were cultured on benzoate alone. These findings suggested that catabolite repression of pyrene but not benzoate occurred in isolate KMS. These differences may help the microbe exploit the varied carbon sources available in the soil and rhizosphere environments.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Biology, Utah State University, Logan, Utah 84322-5305, USA
| | | |
Collapse
|
16
|
Multiplicity of genes for aromatic ring-hydroxylating dioxygenases in Mycobacterium isolate KMS and their regulation. Biodegradation 2012; 23:585-96. [DOI: 10.1007/s10532-012-9535-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
|
17
|
Kallimanis A, Karabika E, Mavromatis K, Lapidus A, LaButti KM, Liolios K, Ivanova N, Goodwin L, Woyke T, Velentzas AD, Perisynakis A, Ouzounis CC, Kyrpides NC, Koukkou AI, Drainas C. Complete genome sequence of Mycobacterium sp. strain (Spyr1) and reclassification to Mycobacterium gilvum Spyr1. Stand Genomic Sci 2011; 5:144-53. [PMID: 22180818 PMCID: PMC3236039 DOI: 10.4056/sigs.2265047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium sp.Spyr1 is a newly isolated strain that occurs in a creosote contaminated site in Greece. It was isolated by an enrichment method using pyrene as sole carbon and energy source and is capable of degrading a wide range of PAH substrates including pyrene, fluoranthene, fluorene, anthracene and acenapthene. Here we describe the genomic features of this organism, together with the complete sequence and annotation. The genome consists of a 5,547,747 bp chromosome and two plasmids, a larger and a smaller one with sizes of 211,864 and 23,681 bp, respectively. In total, 5,588 genes were predicted and annotated.
Collapse
Affiliation(s)
- Aristeidis Kallimanis
- Sector of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Eugenia Karabika
- Sector of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | | | - Alla Lapidus
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | | | - Lynne Goodwin
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Athanasios D. Velentzas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, 15701, Athens, Greece
| | - Angelos Perisynakis
- Sector of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Christos C. Ouzounis
- Centre for Bioinformatics, Department of Informatics, School of Natural & Mathematical Sciences, King's College London (KCL), London WC2R 2LS, UK
- Present address: Computational Genomics Unit, Institute of Agrobiotechnology, Center for Research & Technology Hellas (CERTH), GR-57001 Thessaloniki, Greece & Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | | | - Anna I. Koukkou
- Sector of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
- Corresponding author: Anna I. Koukkou,
| | - Constantin Drainas
- Sector of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
18
|
Nopcharoenkul W, Pinphanichakarn P, Pinyakong O. The development of a liquid formulation of Pseudoxanthomonas sp. RN402 and its application in the treatment of pyrene-contaminated soil. J Appl Microbiol 2011; 111:36-47. [PMID: 21518158 DOI: 10.1111/j.1365-2672.2011.05037.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To develop a liquid formulation of Pseudoxanthomonas sp. RN402 for prolonged storage and maintaining high survival rates and pyrene biodegradability. METHODS AND RESULTS Liquid formulations of RN402, designated as L-RN402, were prepared by suspending bacterial cells (10⁹ CFU ml⁻¹) in various buffers. Analysis found that phosphate buffer containing glycerol maintained high survival rate (94%) as well as pyrene biodegradability of bacteria after a 30-day storage. This L-RN402 could be stored at 30°C for at least 6 months. Bioaugmentation treatment with stored L-RN402 resulted in the complete degradation of pyrene (300 mg kg⁻¹) in soil microcosms within 4 weeks. RN402 could be detected by denaturing gradient gel electrophoresis throughout the period; moreover, real-time PCR indicated the presence of high number of nidA-containing bacteria. CONCLUSIONS A liquid formulation of RN402, an effective pyrene degrader, was developed by suspending RN402 in phosphate buffer containing 1% glycerol. This formulation could be stored at 30°C for at least 6 months and maintain high efficacy in the treatment of pyrene-contaminated soil. SIGNIFICANCE AND IMPACT OF THE STUDY This work is the first description of a liquid formulation of pyrene-degrading bacteria for prolonged storage that retains biological activity for the treatment of environmental pollutants.
Collapse
Affiliation(s)
- W Nopcharoenkul
- Inter-department of Environmental Science, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | | | | |
Collapse
|