1
|
Sheoran P, Saini G, Jangra M, Gahlaut A, Raj V. Immobilization of penicillinase on chitosan-modified gold electrodes for enhanced stability and potential biosensing applications. Prep Biochem Biotechnol 2025:1-11. [PMID: 40347098 DOI: 10.1080/10826068.2025.2502771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
Abstract
In this research, penicillinase was isolated from Bacillus licheniformis by ammonium sulfate precipitation, dialysis, sephadex-25 chromatography and sodium dodecyl sulfate (SDS)-PAGE. The enzyme was then attached to a chitosan- modified gold (Au) electrode surface via covalent bonds using GA as the linking agent. The immobilized enzyme's characteristics were evaluated by determining various parameters including pH and temperature optima, enzyme activity retention, and reusability potential. The substrate Penicillin G was employed for these assessments. Post-immobilization analysis showed that while the optimal pH range remained constant at 6.5-7.5, the temperature for maximum enzyme activity increased from 34 °C to 38 °C compared to the enzyme in solution. It was found that the immobilized enzyme maintained around 80% of its initial activity after being kept at 4 °C for a period of 30 days. When compared to the enzyme in its free state, the immobilization method made it more stable and usable. Even after 14 consecutive reaction cycles, the immobilized enzyme retained 38% of its initial catalytic activity.
Collapse
Affiliation(s)
- Parneet Sheoran
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Geetanjali Saini
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Madhu Jangra
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Vikas Raj
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
2
|
Bachosz K, Piasecki A, Zdarta A, Kaczorek E, Pinelo M, Zdarta J, Jesionowski T. Enzymatic membrane reactor in xylose bioconversion with simultaneous cofactor regeneration. Bioorg Chem 2022; 123:105781. [PMID: 35395447 DOI: 10.1016/j.bioorg.2022.105781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/22/2022]
Abstract
In this study, we present the concept of co-immobilization of xylose dehydrogenase and alcohol dehydrogenase from Saccharomyces cerevisiae on an XN45 nanofiltration membrane for application in the process of xylose bioconversion to xylonic acid with simultaneous cofactor regeneration and membrane separation of reaction products. During the research, the effectiveness of the co-immobilization of enzymes was confirmed, and changes in the properties of the membrane after the processes were determined. Using the obtained biocatalytic system it was possible to obtain 99% xylonic acid production efficiency under optimal conditions, which were 5 mM xylose, 5 mM formaldehyde, ratio of NAD+:NADH 1:1, and 60 min of reaction. Additionally, the co-immobilization of enzymes made it possible to improve stability of the co-immobilized enzymes and to carry out xylose conversion in six consecutive cycles and after 7 days of storage at 4 °C with over 90% efficiency. The presented data confirm the effectiveness of the co-immobilization, improvement of the stability and reusability of the biocatalysts, and show that the obtained enzymatic system is promising for use in xylose bioconversion and simultaneous regeneration of nicotinamide cofactor.
Collapse
Affiliation(s)
- Karolina Bachosz
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Adam Piasecki
- Institute of Materials Science and Engineering, Faculty of Mechanical Engineering and Management, Poznan University of Technology, Jana Pawla II 24, PL-60965 Poznan, Poland.
| | - Agata Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Manuel Pinelo
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Soltofts Plads, Building 227, DK-2800 Kongens Lyngby, Denmark.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| |
Collapse
|
3
|
Li K, Mohammed MAA, Zhou Y, Tu H, Zhang J, Liu C, Chen Z, Burns R, Hu D, Ruso JM, Tang Z, Liu Z. Recent progress in the development of immobilized penicillin G acylase for chemical and industrial applications: A mini‐review. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ke Li
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Monier Alhadi Abdelrahman Mohammed
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Yongshan Zhou
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Hongyi Tu
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Jiachen Zhang
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Chunli Liu
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Zhenbin Chen
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Robert Burns
- Department of Physics and EngineeringFrostburg State University Frostburg Maryland
| | - Dongdong Hu
- State Key Laboratory of Chemical EngineeringEast China University of Science and Technology Shanghai China
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied PhysicsUniversity of Santiago de Compostela Santiago de Compostela Spain
| | - Zhenghua Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy MaterialsNew Energy Research Institute School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou China
- Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy MaterialsSchool of Environment and Energy South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou China
| | - Zhen Liu
- Department of Physics and EngineeringFrostburg State University Frostburg Maryland
| |
Collapse
|
4
|
Alam S, Ahmad R, Pranaw K, Mishra P, Khare SK. Asparaginase conjugated magnetic nanoparticles used for reducing acrylamide formation in food model system. BIORESOURCE TECHNOLOGY 2018; 269:121-126. [PMID: 30157443 DOI: 10.1016/j.biortech.2018.08.095] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Acrylamide is a potent carcinogen and neurotoxin formed by the Maillard reaction when l-asparagine reacts with starch at high temperature. It is formed in food materials mainly deep fried and bakery products. Enzymatic pretreatment of these food products with asparaginase enzyme leads to reduction in acrylamide. However, enzymatic process is quite expensive due to high cost, low catalytic efficiency as well as problem with enzyme reusability. Present work deals with these problems by exploring l-asparaginase from Bacillus aryabhattai. Asparaginase enzyme was immobilized on APTES modified magnetic nanoparticles. It was found to be more than three-fold increase their thermal stability from free enzyme and retained 90% activity after fifth cycle. The immobilized enzyme also showed better affinity towards its substrate. During pretreatment of asparagine in a starch-asparagine food model system and it was clearly demonstrated that asparaginase nanoconjugates had reduced the formation of acrylamide by more than 90% within 30 min.
Collapse
Affiliation(s)
- Shahenvaz Alam
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Kumar Pranaw
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
5
|
Ghosh S, Ahmad R, Gautam VK, Khare SK. Cholesterol-oxidase-magnetic nanobioconjugates for the production of 4-cholesten-3-one and 4-cholesten-3, 7-dione. BIORESOURCE TECHNOLOGY 2018; 254:91-96. [PMID: 29413944 DOI: 10.1016/j.biortech.2018.01.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/01/2018] [Accepted: 01/05/2018] [Indexed: 06/08/2023]
Abstract
Cholesterol oxidase(ChOx) enzyme isolated from Pseudomonas aeruginosa PseA(ChOxP) and Rhodococcus erythropolis MTCC 3951(ChOxR) strains as well as a commercial variant produced by Streptomyces sp.(ChOxS) were immobilized on silane modified iron(II, III)oxide magnetic nanoparticles(MNP) by covalent coupling methods. The nanobiocatalysts in case of ChOxP, ChOxR and ChOxS, retained 71, 91 and 86% of cholesterol oxidase activity respectively, as compared to their soluble counterparts. The catalytic efficiency of the immobilized enzymes on nanoparticles was more than 2.0 times higher than the free enzyme. They also showed enhanced pH and thermal stability. After 10 cycles of operation, the MNP-bioconjugates retained 50, 52 and 51% of residual activity in case of ChOxP, ChOxR and ChOxS respectively. The presence of enzyme on nanoparticles was confirmed by FTIR, SEM and TEM. The nanobiocatalysts were used for the biotransformation of cholesterol and 7-ketocholesterol to 4-cholesten-3-one and 4-cholesten-3, 7-dione respectively, which are industrially and medically important steroid precursors.
Collapse
Affiliation(s)
- Shubhrima Ghosh
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Vikas Kumar Gautam
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
6
|
Nomanbhay SM, Hussain R. Immobilization of Escherichia coli Mutant Strain for Efficient Production of
Bioethanol from Crude Glycerol. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/jas.2015.415.430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Lima AF, Cavalcante KF, de Freitas MDFM, Rodrigues THS, Rocha MVP, Gonçalves LRB. Comparative biochemical characterization of soluble and chitosan immobilized β-galactosidase from Kluyveromyces lactis NRRL Y1564. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Adikane HV, Iyer GJ. Chemical Modification of Ethyl Cellulose-Based Highly Porous Membrane for the Purification of Immunoglobulin G. Appl Biochem Biotechnol 2013; 169:1026-38. [DOI: 10.1007/s12010-012-0085-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/28/2012] [Indexed: 11/29/2022]
|
9
|
Jochems P, Satyawali Y, Van Roy S, Doyen W, Diels L, Dejonghe W. Characterization and optimization of β-galactosidase immobilization process on a mixed-matrix membrane. Enzyme Microb Technol 2011; 49:580-8. [DOI: 10.1016/j.enzmictec.2011.06.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
|