1
|
Johan UUM, Rahman RNZRA, Kamarudin NHA, Latip W, Ali MSM. Immobilization of Hyperthermostable Carboxylesterase EstD9 from Anoxybacillus geothermalis D9 onto Polymer Material and Its Physicochemical Properties. Polymers (Basel) 2023; 15:polym15061361. [PMID: 36987142 PMCID: PMC10056866 DOI: 10.3390/polym15061361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Carboxylesterase has much to offer in the context of environmentally friendly and sustainable alternatives. However, due to the unstable properties of the enzyme in its free state, its application is severely limited. The present study aimed to immobilize hyperthermostable carboxylesterase from Anoxybacillus geothermalis D9 with improved stability and reusability. In this study, Seplite LX120 was chosen as the matrix for immobilizing EstD9 by adsorption. Fourier-transform infrared (FT-IR) spectroscopy verified the binding of EstD9 to the support. According to SEM imaging, the support surface was densely covered with the enzyme, indicating successful enzyme immobilization. BET analysis of the adsorption isotherm revealed reduction of the total surface area and pore volume of the Seplite LX120 after immobilization. The immobilized EstD9 showed broad thermal stability (10-100 °C) and pH tolerance (pH 6-9), with optimal temperature and pH of 80 °C and pH 7, respectively. Additionally, the immobilized EstD9 demonstrated improved stability towards a variety of 25% (v/v) organic solvents, with acetonitrile exhibiting the highest relative activity (281.04%). The bound enzyme exhibited better storage stability than the free enzyme, with more than 70% of residual activity being maintained over 11 weeks. Through immobilization, EstD9 can be reused for up to seven cycles. This study demonstrates the improvement of the operational stability and properties of the immobilized enzyme for better practical applications.
Collapse
Affiliation(s)
- Ummie Umaiera Mohd Johan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Wahhida Latip
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
2
|
Saravanakumar T, Palvannan T, Kim DH, Park SM. Optimized immobilization of peracetic acid producing recombinant acetyl xylan esterase on chitosan coated-Fe3O4 magnetic nanoparticles. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Immobilization and Biochemical Properties of the Enantioselective Recombinant NStcI Esterase of Aspergillus nidulans. Enzyme Res 2013; 2013:928913. [PMID: 23781330 PMCID: PMC3678419 DOI: 10.1155/2013/928913] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 11/23/2022] Open
Abstract
The recombinant NStcI A. nidulans esterase was adsorbed on Accurel MP1000, where protein yield and immobilization efficiency were 42.48% and 81.94%, respectively. Storage stability test at 4°C and RT showed 100% of residual activity after 40 days at both temperatures. The biocatalyst retains more than 70% of its initial activity after 3 cycles of repeated use. Biochemical properties of this new biocatalyst were obtained. Maximum activity was achieved at pH 11 and 30°C, while the best stability was observed with the pH between 9 and 11 at 40°C. NStcI thermostability was increased after immobilization, as it retained 47.5% of its initial activity after 1 h at 60°C, while the free enzyme under the same conditions displayed no activity. NStcI preserved 70% of its initial activity in 100% hexane after 72 h. Enzymatic kinetic resolution of (R,S)-1-phenylethanol was chosen as model reaction, using vinyl acetate as acyl donor. After optimization of reaction parameters, the highest possible conversion (42%) was reached at 37°C, aw of 0.07, and 120 h of bioconversion in hexane with an enantiomeric excess of 71.7%. NStcI has selectivity for (R)-enantiomer. The obtained E value (31.3) is in the range considered useful to resolve enantiomeric mixtures.
Collapse
|
4
|
Bäbler MU, Kebede ML, Rozada-Sanchez R, Åslund P, Gregertsen B, Rasmuson ÅC. Isolation of Pharmaceutical Intermediates through Solid Supported Evaporation. Semicontinuous Operation Mode. Ind Eng Chem Res 2012. [DOI: 10.1021/ie301359c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthäus U. Bäbler
- Department
of Chemical Engineering and Technology, KTH Royal Institute of Technology, SE-10044 Stockholm,
Sweden
| | - Mebatsion L. Kebede
- Department
of Chemical Engineering and Technology, KTH Royal Institute of Technology, SE-10044 Stockholm,
Sweden
| | | | - Per Åslund
- AstraZeneca Pharmaceutical Development, SE-15185 Södertälje, Sweden
| | - Björn Gregertsen
- AstraZeneca Pharmaceutical Development, SE-15185 Södertälje, Sweden
| | - Åke C. Rasmuson
- Department
of Chemical Engineering and Technology, KTH Royal Institute of Technology, SE-10044 Stockholm,
Sweden
- Department
of Chemical and Environmental Science, Solid State Pharmaceutical
Cluster, Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
5
|
Kebede ML, Bäbler MU, Rozada-Sanchez R, Gregertsen B, Rasmuson ÅC. Isolation of Pharmaceutical Intermediates through Solid Supported Evaporation. Batch Operation Mode. Ind Eng Chem Res 2012. [DOI: 10.1021/ie301358x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mebatsion L. Kebede
- Department
of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-10044 Stockholm,
Sweden
| | - Matthäus U. Bäbler
- Department
of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-10044 Stockholm,
Sweden
| | | | - Björn Gregertsen
- AstraZeneca Pharmaceutical Development, SE-15185 Södertälje, Sweden
| | - Åke C. Rasmuson
- Department
of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-10044 Stockholm,
Sweden
- Department
of Chemical and Environmental Science, Solid State Pharmaceutical
Cluster, Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
6
|
Branco RV, Estrada Gutarra ML, Freire DMG, Almeida RV. Immobilization and Characterization of a Recombinant Thermostable Lipase (Pf2001) from Pyrococcus furiosus on Supports with Different Degrees of Hydrophobicity. Enzyme Res 2010; 2010:180418. [PMID: 21052496 PMCID: PMC2967836 DOI: 10.4061/2010/180418] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/10/2010] [Accepted: 09/22/2010] [Indexed: 11/20/2022] Open
Abstract
We studied the immobilization of a recombinant thermostable lipase (Pf2001Δ60) from the hyperthermophilic archaeon Pyrococcus furiosus on supports with different degrees of hydrophobicity: butyl Sepabeads and octadecyl Sepabeads. The enzyme was strongly adsorbed in both supports. When it was adsorbed on these supports, the enzyme showed 140 and 237% hyperactivation, respectively. The assessment of storage stability showed that the octadecyl Sepabeads immobilized enzyme showed 100% of residual activity after 30 days of storage. However, the greatest stability at 70°C was obtained in butyl Sepabeads immobilized enzyme, which retained 77% activity after 1 hour incubation. The maximum activity of the immobilized preparations was obtained with the pH between 6 and 7, at 70°C. Thus, this study achieved a new extremophilic biocatalyst with greater stability, for use in several biotechnological processes.
Collapse
Affiliation(s)
- Roberta Vieira Branco
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, RJ 21941-909, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|