1
|
Lakshmi NM, Binod P, Sindhu R, Awasthi MK, Pandey A. Microbial engineering for the production of isobutanol: current status and future directions. Bioengineered 2021; 12:12308-12321. [PMID: 34927549 PMCID: PMC8809953 DOI: 10.1080/21655979.2021.1978189] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fermentation-derived alcohols have gained much attention as an alternate fuel due to its minimal effects on atmosphere. Besides its application as biofuel it is also used as raw material for coating resins, deicing fluid, additives in polishes, etc. Among the liquid alcohol type of fuels, isobutanol has more advantage than ethanol. Isobutanol production is reported in native yeast strains, but the production titer is very low which is about 200 mg/L. In order to improve the production, several genetic and metabolic engineering approaches have been carried out. Genetically engineered organism has been reported to produce maximum of 50 g/L of isobutanol which is far more than the native strain without any modification. In bacteria mostly last two steps in Ehrlich pathway, catalyzed by enzymes ketoisovalerate decarboxylase and alcohol dehydrogenase, are heterologously expressed to improve the production. Native Saccharomyces cerevisiae can produce isobutanol in negligible amount since it possesses the pathway for its production through valine degradation pathway. Further modifications in the existing pathways made the improvement in isobutanol production in many microbial strains. Fermentation using cost-effective lignocellulosic biomass and an efficient downstream process can yield isobutanol in environment friendly and sustainable manner. The present review describes the various genetic and metabolic engineering practices adopted to improve the isobutanol production in microbial strains and its downstream processing.
Collapse
Affiliation(s)
- Nair M Lakshmi
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (Csir-niist), Thiruvananthapuram Kerala, India.,Academy of Scientific and Innovative Research (Acsir), Ghaziabad, Uttar Pradesh India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (Csir-niist), Thiruvananthapuram Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (Csir-niist), Thiruvananthapuram Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West a & F University, Yangling, Shaanxi China
| | - Ashok Pandey
- Centre for Innovation and Translational Research CSIR-Indian Institute of Toxicology Research (Csir-iitr), Lucknow India.,Centre for Energy and Environmental Sustainability, Lucknow Uttar Pradesh, India
| |
Collapse
|
2
|
Amer M, Toogood H, Scrutton NS. Engineering nature for gaseous hydrocarbon production. Microb Cell Fact 2020; 19:209. [PMID: 33187524 PMCID: PMC7661322 DOI: 10.1186/s12934-020-01470-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/04/2020] [Indexed: 11/10/2022] Open
Abstract
The development of sustainable routes to the bio-manufacture of gaseous hydrocarbons will contribute widely to future energy needs. Their realisation would contribute towards minimising over-reliance on fossil fuels, improving air quality, reducing carbon footprints and enhancing overall energy security. Alkane gases (propane, butane and isobutane) are efficient and clean-burning fuels. They are established globally within the transportation industry and are used for domestic heating and cooking, non-greenhouse gas refrigerants and as aerosol propellants. As no natural biosynthetic routes to short chain alkanes have been discovered, de novo pathways have been engineered. These pathways incorporate one of two enzymes, either aldehyde deformylating oxygenase or fatty acid photodecarboxylase, to catalyse the final step that leads to gas formation. These new pathways are derived from established routes of fatty acid biosynthesis, reverse β-oxidation for butanol production, valine biosynthesis and amino acid degradation. Single-step production of alkane gases in vivo is also possible, where one recombinant biocatalyst can catalyse gas formation from exogenously supplied short-chain fatty acid precursors. This review explores current progress in bio-alkane gas production, and highlights the potential for implementation of scalable and sustainable commercial bioproduction hubs.
Collapse
Affiliation(s)
- Mohamed Amer
- EPSRC/BBSRC Future Biomanufacturing Research Hub, Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, BBSRC/EPSRC, The University of Manchester, Manchester, M1 7DN, UK
| | - Helen Toogood
- EPSRC/BBSRC Future Biomanufacturing Research Hub, Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, BBSRC/EPSRC, The University of Manchester, Manchester, M1 7DN, UK
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, BBSRC/EPSRC, The University of Manchester, Manchester, M1 7DN, UK.
| |
Collapse
|
3
|
Yu L, Wu F, Chen G. Next‐Generation Industrial Biotechnology‐Transforming the Current Industrial Biotechnology into Competitive Processes. Biotechnol J 2019; 14:e1800437. [DOI: 10.1002/biot.201800437] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/01/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Lin‐Ping Yu
- Ministry of Education Key Laboratory for Bioinformatics, School of Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Center for Synthetic and Systems BiologyTsinghua University New Biology Building 100084 Beijing China
- Tsinghua‐Peking Center for Life SciencesTsinghua University New Biology Building 100084 Beijing China
| | - Fu‐Qing Wu
- Ministry of Education Key Laboratory for Bioinformatics, School of Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Center for Synthetic and Systems BiologyTsinghua University New Biology Building 100084 Beijing China
- Tsinghua‐Peking Center for Life SciencesTsinghua University New Biology Building 100084 Beijing China
| | - Guo‐Qiang Chen
- Ministry of Education Key Laboratory for Bioinformatics, School of Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Center for Synthetic and Systems BiologyTsinghua University New Biology Building 100084 Beijing China
- Tsinghua‐Peking Center for Life SciencesTsinghua University New Biology Building 100084 Beijing China
- Manchester Institute of Biotechnology, Centre for Synthetic BiologyThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
4
|
Acedos MG, de la Torre I, Santos VE, Garcia-Ochoa F. Kinetic Modeling of the Isobutanol Production from Glucose Using Shimwellia blattae (p424IbPSO) Strain: Effect of Initial Substrate Concentration. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miguel G. Acedos
- Chemical & Materials Engineering Department, Universidad Complutense, 28040 Madrid, Spain
| | - Isabel de la Torre
- Chemical & Materials Engineering Department, Universidad Complutense, 28040 Madrid, Spain
| | - Victoria E. Santos
- Chemical & Materials Engineering Department, Universidad Complutense, 28040 Madrid, Spain
| | - Felix Garcia-Ochoa
- Chemical & Materials Engineering Department, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
5
|
Lin S, Liu ZQ, Xue YP, Baker PJ, Wu H, Xu F, Teng Y, Brathwaite ME, Zheng YG. Biosynthetic Pathway Analysis for Improving the Cordycepin and Cordycepic Acid Production in Hirsutella sinensis. Appl Biochem Biotechnol 2016; 179:633-49. [PMID: 26922724 DOI: 10.1007/s12010-016-2020-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/16/2016] [Indexed: 11/25/2022]
Abstract
Hirsutella sinensis is considered as the only correct anamorph of Ophiocordyceps sinensis. To improve cordycepin and cordycepic acid production in H. sinensis, the biosynthetic pathways of cordycepin and cordycepic acid were predicted, and verified by cloning and expressing genes involved in these pathways, respectively. Then, 5'-nucleotidase participating in biosynthetic pathway of cordycepin, hexokinase, and glucose phosphate isomerase involved in biosynthetic pathway of cordycepic acid, were demonstrated playing important roles in the corresponding biosynthetic pathway by real-time PCR, accompanying with significantly up-regulated 15.03-, 5.27-, and 3.94-fold, respectively. Moreover, the metabolic regulation of H. sinensis was performed. As expected, cordycepin production reached 1.09 mg/g when additional substrate of 5'-nucleotidase was 4 mg/mL, resulting in an increase of 201.1 % compared with the control. In the same way, cordycepic acid production reached 26.6 and 23.4 % by adding substrate of hexokinase or glucose phosphate isomerase, leading to a rise of 77.3 and 55.1 %, respectively. To date, this is the first time to improve cordycepin and cordycepic acid production through metabolic regulation based on biosynthetic pathway analysis, and metabolic regulation is proved as a simple and effective way to enhance the output of cordycepin and cordycepic acid in submerged cultivation of H. sinensis.
Collapse
Affiliation(s)
- Shan Lin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Peter James Baker
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Hui Wu
- East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, Zhejiang, People's Republic of China
| | - Feng Xu
- East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, Zhejiang, People's Republic of China
| | - Yi Teng
- East China Pharmaceutical Group Limited Co., Ltd, Hangzhou, 311000, Zhejiang, People's Republic of China
| | - Mgavi Elombe Brathwaite
- Polytechnic School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Zhang L, Liang Y, Wu W, Tan X, Lu X. Microbial synthesis of propane by engineering valine pathway and aldehyde-deformylating oxygenase. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:80. [PMID: 27042209 PMCID: PMC4818529 DOI: 10.1186/s13068-016-0496-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/22/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND Propane, a major component of liquid petroleum gas (LPG) derived from fossil fuels, has widespread applications in vehicles, cooking, and ambient heating. Given the concerns about fossil fuel depletion and carbon emission, exploiting alternative and renewable source of propane have become attractive. In this study, we report the construction of a novel propane biosynthetic pathway in Escherichia coli. RESULTS We constructed an aldehyde reductases (ALR)-deprived E. coli strain BW25113(DE3) Δ13 via genetic engineering, which produced sufficient isobutyraldehyde precursors and finally achieved de novo synthesis of propane (91 μg/L) by assembling the engineered valine pathway and cyanobacterial aldehyde-deformylating oxygenase (ADO). Additionally, after extensive screening of ADO mutants generated by engineering the active center to accommodate branched-chain isobutyraldehyde, we identified two ADO mutants (I127G, I127G/A48G) which exhibited higher catalytic activity for isobutyraldehyde and improved propane productivity by three times (267 μg/L). CONCLUSIONS The propane biosynthetic pathway constructed here through the engineered valine pathway can produce abundant isobutyraldehyde for ADO and overcome the low availability of precursors in propane production. Furthermore, the rational design aiming at the ADO active center illustrates the plasticity and catalytic potential of ADO. These results together highlight the potential for developing a microbial biomanufacturing platform for propane.
Collapse
Affiliation(s)
- Lei Zhang
- />Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
- />University of Chinese Academy of Sciences, Beijing, China
| | - Yajing Liang
- />Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
| | - Wei Wu
- />Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
| | - Xiaoming Tan
- />Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
| | - Xuefeng Lu
- />Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 China
| |
Collapse
|
7
|
Toya Y, Hirasawa T, Ishikawa S, Chumsakul O, Morimoto T, Liu S, Masuda K, Kageyama Y, Ozaki K, Ogasawara N, Shimizu H. Enhanced dipicolinic acid production during the stationary phase in Bacillus subtilis by blocking acetoin synthesis. Biosci Biotechnol Biochem 2015; 79:2073-80. [DOI: 10.1080/09168451.2015.1060843] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Bacterial bio-production during the stationary phase is expected to lead to a high target yield because the cells do not consume the substrate for growth. Bacillus subtilis is widely used for bio-production, but little is known about the metabolism during the stationary phase. In this study, we focused on the dipicolinic acid (DPA) production by B. subtilis and investigated the metabolism. We found that DPA production competes with acetoin synthesis and that acetoin synthesis genes (alsSD) deletion increases DPA productivity by 1.4-fold. The mutant showed interesting features where the glucose uptake was inhibited, whereas the cell density increased by approximately 50%, resulting in similar volumetric glucose consumption to that of the parental strain. The metabolic profiles revealed accumulation of pyruvate, acetyl-CoA, and the TCA cycle intermediates in the alsSD mutant. Our results indicate that alsSD-deleted B. subtilis has potential as an effective host for stationary-phase production of compounds synthesized from these intermediates.
Collapse
Affiliation(s)
- Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Japan
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
| | - Takashi Hirasawa
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Japan
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
- Department of Bioengineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Shu Ishikawa
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Onuma Chumsakul
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Takuya Morimoto
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
- Biological Science Laboratories, Kao Corporation, Haga, Japan
| | - Shenghao Liu
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
- Biological Science Laboratories, Kao Corporation, Haga, Japan
| | - Kenta Masuda
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
- Biological Science Laboratories, Kao Corporation, Haga, Japan
| | - Yasushi Kageyama
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
- Biological Science Laboratories, Kao Corporation, Haga, Japan
| | - Katsuya Ozaki
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
- Biological Science Laboratories, Kao Corporation, Haga, Japan
| | - Naotake Ogasawara
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Japan
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency (JST, ALCA), Japan
| |
Collapse
|
8
|
Bacterial production of isobutanol without expensive reagents. Appl Microbiol Biotechnol 2014; 99:991-9. [DOI: 10.1007/s00253-014-6173-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/15/2014] [Accepted: 10/16/2014] [Indexed: 10/24/2022]
|
9
|
Qi H, Li S, Zhao S, Huang D, Xia M, Wen J. Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis. PLoS One 2014; 9:e93815. [PMID: 24705866 PMCID: PMC3976320 DOI: 10.1371/journal.pone.0093815] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/06/2014] [Indexed: 12/05/2022] Open
Abstract
To rationally guide the improvement of isobutanol production, metabolic network and metabolic profiling analysis were performed to provide global and profound insights into cell metabolism of isobutanol-producing Bacillus subtilis. The metabolic flux distribution of strains with different isobutanol production capacity (BSUL03, BSUL04 and BSUL05) drops a hint of the importance of NADPH on isobutanol biosynthesis. Therefore, the redox pathways were redesigned in this study. To increase NADPH concentration, glucose-6-phosphate isomerase was inactivated (BSUL06) and glucose-6-phosphate dehydrogenase was overexpressed (BSUL07) successively. As expected, NADPH pool size in BSUL07 was 4.4-fold higher than that in parental strain BSUL05. However, cell growth, isobutanol yield and production were decreased by 46%, 22%, and 80%, respectively. Metabolic profiling analysis suggested that the severely imbalanced redox status might be the primary reason. To solve this problem, gene udhA of Escherichia coli encoding transhydrogenase was further overexpressed (BSUL08), which not only well balanced the cellular ratio of NAD(P)H/NAD(P)+, but also increased NADH and ATP concentration. In addition, a straightforward engineering approach for improving NADPH concentrations was employed in BSUL05 by overexpressing exogenous gene pntAB and obtained BSUL09. The performance for isobutanol production by BSUL09 was poorer than BSUL08 but better than other engineered strains. Furthermore, in fed-batch fermentation the isobutanol production and yield of BSUL08 increased by 11% and 19%, up to the value of 6.12 g/L and 0.37 C-mol isobutanol/C-mol glucose (63% of the theoretical value), respectively, compared with parental strain BSUL05. These results demonstrated that model-driven complemented with metabolic profiling analysis could serve as a useful approach in the strain improvement for higher bio-productivity in further application.
Collapse
Affiliation(s)
- Haishan Qi
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Shanshan Li
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Sumin Zhao
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Di Huang
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Menglei Xia
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
| | - Jianping Wen
- Key Laboratory of System Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, People's Republic of China
- * E-mail:
| |
Collapse
|
10
|
Straathof AJJ. Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells. Chem Rev 2013; 114:1871-908. [DOI: 10.1021/cr400309c] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Adrie J. J. Straathof
- Department of Biotechnology, Delft University of Technology, Julianalaan
67, 2628
BC Delft, The Netherlands
| |
Collapse
|
11
|
Avalos JL, Fink GR, Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 2013; 31:335-41. [PMID: 23417095 PMCID: PMC3659820 DOI: 10.1038/nbt.2509] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/11/2013] [Indexed: 01/08/2023]
Abstract
Efforts to improve the production of a compound of interest in Saccharomyces cerevisiae have mainly involved engineering or overexpression of cytoplasmic enzymes. We show that targeting metabolic pathways to mitochondria can increase production compared with overexpression of the enzymes involved in the same pathways in the cytoplasm. Compartmentalization of the Ehrlich pathway into mitochondria increased isobutanol production by 260%, whereas overexpression of the same pathway in the cytoplasm only improved yields by 10%, compared with a strain overproducing enzymes involved in only the first three steps of the biosynthetic pathway. Subcellular fractionation of engineered strains revealed that targeting the enzymes of the Ehrlich pathway to the mitochondria achieves greater local enzyme concentrations. Other benefits of compartmentalization may include increased availability of intermediates, removing the need to transport intermediates out of the mitochondrion and reducing the loss of intermediates to competing pathways.
Collapse
Affiliation(s)
- José L Avalos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
12
|
Hao T, Han B, Ma H, Fu J, Wang H, Wang Z, Tang B, Chen T, Zhao X. In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol. MOLECULAR BIOSYSTEMS 2013; 9:2034-44. [DOI: 10.1039/c3mb25568a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Branched-Chain Higher Alcohols. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2011; 128:101-18. [DOI: 10.1007/10_2011_121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|