1
|
Nakapong S, Tumhom S, Kaulpiboon J, Pongsawasdi P. Heterologous expression of 4α-glucanotransferase: overproduction and properties for industrial applications. World J Microbiol Biotechnol 2022; 38:36. [PMID: 34993677 DOI: 10.1007/s11274-021-03220-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
4α-Glucanotransferase (4α-GTase) is unique in its ability to form cyclic oligosaccharides, some of which are of industrial importance. Generally, low amount of enzymes is produced by or isolated from their natural sources: animals, plants, and microorganisms. Heterologous expressions of these enzymes, in an attempt to increase their production for applicable uses, have been widely studied since 1980s; however, the expressions are mostly performed in the prokaryotic bacteria, mostly Escherichia coli. Site-directed mutagenesis has added more value to these expressed enzymes to display the desired properties beneficial for their applications. The search for further suitable properties for food application leads to an extended research in expression by another group of host organism, the generally-recognized as safe host including the Bacillus and the eukaryotic yeast systems. Herein, our review focuses on two types of 4α-GTase: the cyclodextrin glycosyltransferase and amylomaltase. The updated studies on the general structure and properties of the two enzymes with emphasis on heterologous expression, mutagenesis for property improvement, and their industrial applications are provided.
Collapse
Affiliation(s)
- Santhana Nakapong
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Suthipapun Tumhom
- Office of National Higher Education Science Research and Innovation Policy Council, Ministry of Higher Education Science Research and Innovation, Bangkok, 10330, Thailand
| | - Jarunee Kaulpiboon
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| | - Piamsook Pongsawasdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Combined Optimization of Codon Usage and Glycine Supplementation Enhances the Extracellular Production of a β-Cyclodextrin Glycosyltransferase from Bacillus sp. NR5 UPM in Escherichia coli. Int J Mol Sci 2020; 21:ijms21113919. [PMID: 32486212 PMCID: PMC7313058 DOI: 10.3390/ijms21113919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 11/24/2022] Open
Abstract
Two optimization strategies, codon usage modification and glycine supplementation, were adopted to improve the extracellular production of Bacillus sp. NR5 UPM β-cyclodextrin glycosyltransferase (CGT-BS) in recombinant Escherichia coli. Several rare codons were eliminated and replaced with the ones favored by E. coli cells, resulting in an increased codon adaptation index (CAI) from 0.67 to 0.78. The cultivation of the codon modified recombinant E. coli following optimization of glycine supplementation enhanced the secretion of β-CGTase activity up to 2.2-fold at 12 h of cultivation as compared to the control. β-CGTase secreted into the culture medium by the transformant reached 65.524 U/mL at post-induction temperature of 37 °C with addition of 1.2 mM glycine and induced at 2 h of cultivation. A 20.1-fold purity of the recombinant β-CGTase was obtained when purified through a combination of diafiltration and nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography. This combined strategy doubled the extracellular β-CGTase production when compared to the single approach, hence offering the potential of enhancing the expression of extracellular enzymes, particularly β-CGTase by the recombinant E. coli.
Collapse
|
3
|
Zheng J, Li X, Wu H. High-level extracellular secretion and characterization of the thermophilic β-cyclodextrin glucanotranferase from Paenibacillus campinasensis in Escherichia coli. 3 Biotech 2019; 9:372. [PMID: 31588396 DOI: 10.1007/s13205-019-1909-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/19/2019] [Indexed: 12/28/2022] Open
Abstract
A strain CGT-1 producing β-cyclodextrin glucanotranferase (β-CGTase) was identified as Paenibacillus campinasensis by morphological analysis and 16s rDNA analysis. The gene coding for β-CGTase was cloned, sequenced, and expressed in Escherichia coli BL21(DE3). Recombinant β-CGTase was purified and its purity evaluated by SDS-PAGE, showing it encodes a mature protein with a molecular mass of 74 kDa. The β-CGTase was most active at pH 7.0 and 65 °C, respectively. More than 80% activity was retained after incubation at 55 °C for 5 h. The stability of the enzyme was in a pH range from 5.5 to 10.0. The K m and V max for the enzyme activity on CGTase were 3.75 mg/mL and 290.75 μmol/min, respectively. The recombinant plasmid pET28a-DacD-cgt-his, pET28a-OmpA-cgt-his, pET28a-OmpT-cgt-his, and pET28a-CGTase-cgt-his were constructed by cloning the signal peptide genes DacD, OmpA, OmpT, and signal peptide derived from cgtase gene into pET28a-cgt-his, respectively. The production of the recombinant β-CGTase with pET28a-DacD-cgt-his reached 60.89 U/mL after 72 h of culture, which produced an approximately 1.98, 2.93, 4.15 to 9.74-fold higher activity than those containing OmpA, CGTase, OmpT, and the control without signal peptide, respectively. The culture conditions for extracellular production of the recombinant β-CGTase in E. coli BL21(DE3) were optimized. The CGTase activity reached the highest level (37.67 U/mL) under the induction of 0.03 mM IPTG at OD600 of 0.8 at 30 °C after 48 h of culture. Optimization of the extracellular secretion of the β-CGTase from Paenibacillus campinasensis in recombinant E. coli laid the foundation for further industrial production and application of β-CGTase.
Collapse
Affiliation(s)
- Jinzhu Zheng
- 1College of Life Sciences, Yangtze University, Jingzhou, 434025 Hubei People's Republic of China
| | - Xiangqian Li
- 2Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian, 223003 People's Republic of China
| | - Huawei Wu
- 1College of Life Sciences, Yangtze University, Jingzhou, 434025 Hubei People's Republic of China
| |
Collapse
|
4
|
Ling HL, Rahmat Z, Murad AMA, Mahadi NM, Illias RM. Proteome-based identification of signal peptides for improved secretion of recombinant cyclomaltodextrin glucanotransferase in Escherichia coli. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Non-peptide guided auto-secretion of recombinant proteins by super-folder green fluorescent protein in Escherichia coli. Sci Rep 2017; 7:6990. [PMID: 28765554 PMCID: PMC5539203 DOI: 10.1038/s41598-017-07421-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/26/2017] [Indexed: 11/11/2022] Open
Abstract
Protein secretion in Escherichia coli is usually led by a signal peptide that targets the protein to specific secretory pathways. In this study, we demonstrated that the superfolder green fluorescent protein (sfGFP) could be served as a non-signal peptide to guide protein auto-secretion in E. coli. This auto-secretion was characterized as a three-step process through the sub-cellular localization analysis: inner membrane trans-location followed by anchoring at outer membrane, and then being released into culture media. We further determined that the beta-barrel structure and net negative charges of sfGFP played important roles in its auto-extracellular secretion property. Using sfGFP as a carrier, heterologous proteins ranging from peptide to complex protein, including antibacterial peptide PG4, endo-beta-N-acethylglucosamindase H (Endo H), human arginase-1 (ARG1), and glutamate decarboxylase (GAD) were all successfully expressed and secreted extracellularly when fused to the carboxyl end of sfGFP. Besides facilitating the extracellular secretion, sfGFP fusion proteins can also be correctly folded and formed the active complex protein structure, including the trimetric human ARG1 and homo-hexametric GAD. This is the first report that sfGFP can guide the secretion of recombinant proteins out of the cells from cytoplasm in E. coli without affecting their conformation and function.
Collapse
|
6
|
Koschorreck K, Wahrendorff F, Biemann S, Jesse A, Urlacher VB. Cell thermolysis – A simple and fast approach for isolation of bacterial laccases with potential to decolorize industrial dyes. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
de Oliveira CX, Ferreira NS, Mota GVS. A DFT study of infrared spectra and Monte Carlo predictions of the solvation shell of Praziquantel and β-cyclodextrin inclusion complex in liquid water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:102-107. [PMID: 26296254 DOI: 10.1016/j.saa.2015.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/24/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
In this paper, we report a theoretical study of the inclusion complexes of Praziquantel (PZQ) and β-cyclodextrin (β-CD) in liquid water. The starting geometry has been carried out by molecular mechanics simulations, and afterwards optimized in B3LYP level with a 6-311G(d) basis set. Monte Carlo simulations have been used to calculate the solvation shell of the PZQ/β-CD inclusion complexes. Moreover, the vibrational frequencies and the infrared intensities for the PZQ/β-CD complex were computed using the B3LYP method. It is demonstrated that this combined model can yield well-converged thermodynamic data even for a modest number of sample configurations, which makes the methodology particularly adequate for understanding the solute-solvent interaction used for generating the liquid structures of one solute surrounded by solvent molecules. The complex solvation shell showed an increase of the water molecule level in relation to the isolated PZQ molecule because of the hydrophilic effect of the CD molecule. The infrared spectra showed that the contribution that originated in the PZQ molecule was not predominant in the upper-wave number region in the drug/β-CD. The movement that purely originated in the PZQ molecule was localized in the absorption band, ranging from 1328 to 1688cm(-1).
Collapse
Affiliation(s)
- C X de Oliveira
- Instituto de Física, Universidade de Brasília, UnB, 70919-970 Brasília, DF, Brazil
| | - N S Ferreira
- Departamento de Física, Universidade Federal do Amapá, UNIFAP, 68902-280 Macapá, AP, Brazil
| | - G V S Mota
- Instituto de Ciências Exatas e Naturais, UFPA, 66075-110 Belém, PA, Brazil; Department of Physics, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
8
|
|
9
|
Han R, Li J, Shin HD, Chen RR, Du G, Liu L, Chen J. Recent advances in discovery, heterologous expression, and molecular engineering of cyclodextrin glycosyltransferase for versatile applications. Biotechnol Adv 2013; 32:415-28. [PMID: 24361954 DOI: 10.1016/j.biotechadv.2013.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 12/04/2013] [Accepted: 12/16/2013] [Indexed: 12/30/2022]
Abstract
Cyclodextrin glycosyltransferase (CGTase) is an important enzyme with multiple functions, in particular the production of cyclodextrins. It is also widely applied in baking and carbohydrate glycosylation because it participates in various types of catalytic reactions. New applications are being found with novel CGTases being isolated from various organisms. Heterologous expression is performed for the overproduction of CGTases to meet the requirements of these applications. In addition, various directed evolution techniques have been applied to modify the molecular structure of CGTase for improved performance in industrial applications. In recent years, substantial progress has been made in the heterologous expression and molecular engineering of CGTases. In this review, we systematically summarize the heterologous expression strategies used for enhancing the production of CGTases. We also outline and discuss the molecular engineering approaches used to improve the production, secretion, and properties (e.g., product and substrate specificity, catalytic efficiency, and thermal stability) of CGTase.
Collapse
Affiliation(s)
- Ruizhi Han
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Wuxi 214122, China
| | - Hyun-Dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Rachel R Chen
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta 30332, USA
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Wuxi 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, Wuxi 214122, China.
| | - Jian Chen
- National Engineering of Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Liu L, Yang H, Shin HD, Chen RR, Li J, Du G, Chen J. How to achieve high-level expression of microbial enzymes: strategies and perspectives. Bioengineered 2013; 4:212-23. [PMID: 23686280 DOI: 10.4161/bioe.24761] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbial enzymes have been used in a large number of fields, such as chemical, agricultural and biopharmaceutical industries. The enzyme production rate and yield are the main factors to consider when choosing the appropriate expression system for the production of recombinant proteins. Recombinant enzymes have been expressed in bacteria (e.g., Escherichia coli, Bacillus and lactic acid bacteria), filamentous fungi (e.g., Aspergillus) and yeasts (e.g., Pichia pastoris). The favorable and very advantageous characteristics of these species have resulted in an increasing number of biotechnological applications. Bacterial hosts (e.g., E. coli) can be used to quickly and easily overexpress recombinant enzymes; however, bacterial systems cannot express very large proteins and proteins that require post-translational modifications. The main bacterial expression hosts, with the exception of lactic acid bacteria and filamentous fungi, can produce several toxins which are not compatible with the expression of recombinant enzymes in food and drugs. However, due to the multiplicity of the physiological impacts arising from high-level expression of genes encoding the enzymes and expression hosts, the goal of overproduction can hardly be achieved, and therefore, the yield of recombinant enzymes is limited. In this review, the recent strategies used for the high-level expression of microbial enzymes in the hosts mentioned above are summarized and the prospects are also discussed. We hope this review will contribute to the development of the enzyme-related research field.
Collapse
Affiliation(s)
- Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhou J, Liu H, Du G, Li J, Chen J. Production of α-cyclodextrin glycosyltransferase in Bacillus megaterium MS941 by systematic codon usage optimization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10285-10292. [PMID: 23013320 DOI: 10.1021/jf302819h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
α-Cyclodextrin glycosyltransferase is a key enzyme in the cyclodextrin industry. The Gram-positive bacterium Bacillus megaterium was chosen for production of recombinant α-CGTase for safety concerns. Successful production of heterologous α-CGTase was achieved by adapting the original α-cgt gene to the codon usage of B. megaterium by systematic codon optimization. This balanced the tRNA pool and reduced ribosomal traffic jams. Protein expression and secretion was ensured by using the strong inducible promoter P(xyl) and the signal peptide SP(LipA). The impact of culture medium composition and induction strategies on α-CGTase production was systematically analyzed. Production and secretion at 32 °C for 24 h using modified culture medium was optimal for α-CGTase yield. Batch- and simple fed-batch fermentation was applied to achieve a high yield of 48.9 U·mL(-1), which was the highest activity reported for a Bacillus species, making this production system a reasonable alternative to Escherichia coli.
Collapse
Affiliation(s)
- Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China.
| | | | | | | | | |
Collapse
|