1
|
Niu H, Sun X, Song J, Zhu C, Chen Y, Gao N, Qu X, Ying H, Liu D. Knockout of pde gene in Arthrobacter sp. CGMCC 3584 and transcriptomic analysis of its effects on cAMP production. Bioprocess Biosyst Eng 2020; 43:839-850. [PMID: 31925506 DOI: 10.1007/s00449-019-02280-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/27/2019] [Indexed: 01/29/2023]
Abstract
Arthrobacter sp. CGMCC 3584 is used for the industrial production of cyclic adenosine monophosphate (cAMP). However, because of the paucity of genetic engineering tools for genetic manipulation on Arthrobacter species, only a few metabolically engineered Arthrobacter have been constructed and investigated. In this study, for the first time, we constructed an arpde knockout mutant of Arthrobacter without any antibiotic resistance marker by a PCR-targeting-based homologous recombination method. Our results revealed that the deletion of arpde had little effect on biomass production and improved cAMP production by 31.1%. Furthermore, we compared the transcriptomes of the arpde knockout strain and the wild strain, aiming to understand the capacities of cAMP production due to arpde inactivation at the molecular level. Comparative transcriptomic analysis revealed that arpde inactivation had two major effects on metabolism: inhibition of glycolysis, PP pathway, and amino acid metabolism (phenylalanine, tryptophan, branched-chain amino acids, and glutamate metabolism); promotion of the purine metabolism and carbon flux from the precursor 5'-phosphoribosyl 1-pyrophosphate, which benefited cAMP production.
Collapse
Affiliation(s)
- Huanqing Niu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing, 210009, People's Republic of China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Xinzeng Sun
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Jiarui Song
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Chenjie Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing, 210009, People's Republic of China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Yong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing, 210009, People's Republic of China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Nan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing, 210009, People's Republic of China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing, 210009, People's Republic of China
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Dong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5, Xinmofan Road, Nanjing, 210009, People's Republic of China.
- National Engineering Technique Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
2
|
An atypical phosphodiesterase capable of degrading haloalkyl phosphate diesters from Sphingobium sp. strain TCM1. Sci Rep 2017; 7:2842. [PMID: 28588250 PMCID: PMC5460133 DOI: 10.1038/s41598-017-03142-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/20/2017] [Indexed: 11/17/2022] Open
Abstract
Sphingobium sp. strain TCM1 can degrade tris(2-chloroethyl) phosphate (TCEP) to inorganic phosphate and 2-chloroethanol. A phosphotriesterase (PTE), phosphodiesterase (PDE) and phosphomonoesterase (PME) are believed to be involved in the degradation of TCEP. The PTE and PME that respectively catalyze the first and third steps of TCEP degradation in TCM1 have been identified. However, no information has been reported on a PDE catalyzing the second step. In this study, we identified, purified, and characterized a PDE capable of hydrolyzing haloalkyl phosphate diesters. The final preparation of the enzyme had a specific activity of 29 µmol min−1 mg−1 with bis(p-nitrophenyl) phosphate (BpNPP) as the substrate. It also possessed low PME activity with p-nitrophenyl phosphate (pNPP) as substrate. The catalytic efficiency (kcat/Km) with BpNPP was significantly higher than that with pNPP, indicating that the enzyme prefers the organophosphorus diester to the monoester. The enzyme degraded bis(2,3-dibromopropyl) phosphate, bis(1,3-dichloro-2-propyl) phosphate and bis(2-chloroethyl) phosphate, suggesting that it is involved in the metabolism of haloalkyl organophosphorus triesters. The primary structure of the PDE from TCM1 is distinct from those of typical PDE family members and the enzyme belongs to the polymerase and histidinol phosphatase superfamily.
Collapse
|
3
|
Schulte J, Baumgart M, Bott M. Identification of the cAMP phosphodiesterase CpdA as novel key player in cAMP-dependent regulation in Corynebacterium glutamicum. Mol Microbiol 2016; 103:534-552. [PMID: 27862445 DOI: 10.1111/mmi.13574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2016] [Indexed: 02/03/2023]
Abstract
The second messenger cyclic AMP (cAMP) plays an important role in the metabolism of Corynebacterium glutamicum, as the global transcriptional regulator GlxR requires complex formation with cAMP to become active. Whereas a membrane-bound adenylate cyclase, CyaB, was shown to be involved in cAMP synthesis, enzymes catalyzing cAMP degradation have not been described yet. In this study we identified a class II cAMP phosphodiesterase named CpdA (Cg2761), homologs of which are present in many Actinobacteria. The purified enzyme has a Kmapp value of 2.5 ± 0.3 mM for cAMP and a Vmaxapp of 33.6 ± 4.3 µmol min-1 mg-1 . A ΔcpdA mutant showed a twofold increased cAMP level on glucose and reduced growth rates on all carbon sources tested. A transcriptome comparison revealed 247 genes with a more than twofold altered mRNA level in the ΔcpdA mutant, 82 of which are known GlxR targets. Expression of cpdA was positively regulated by GlxR, thereby creating a negative feedback loop allowing to counteract high cAMP levels. The results show that CpdA plays a key role in the control of the cellular cAMP concentration and GlxR activity and is crucial for optimal metabolism and growth of C. glutamicum.
Collapse
Affiliation(s)
- Julia Schulte
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, 52425, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, 52425, Germany
| |
Collapse
|
4
|
Gross I, Durner J. In Search of Enzymes with a Role in 3', 5'-Cyclic Guanosine Monophosphate Metabolism in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:576. [PMID: 27200049 PMCID: PMC4858519 DOI: 10.3389/fpls.2016.00576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/14/2016] [Indexed: 05/07/2023]
Abstract
In plants, nitric oxide (NO)-mediated 3', 5'-cyclic guanosine monophosphate (cGMP) synthesis plays an important role during pathogenic stress response, stomata closure upon osmotic stress, the development of adventitious roots and transcript regulation. The NO-cGMP dependent pathway is well characterized in mammals. The binding of NO to soluble guanylate cyclase enzymes (GCs) initiates the synthesis of cGMP from guanosine triphosphate. The produced cGMP alters various cellular responses, such as the function of protein kinase activity, cyclic nucleotide gated ion channels and cGMP-regulated phosphodiesterases. The signal generated by the second messenger is terminated by 3', 5'-cyclic nucleotide phosphodiesterase (PDEs) enzymes that hydrolyze cGMP to a non-cyclic 5'-guanosine monophosphate. To date, no homologues of mammalian cGMP-synthesizing and degrading enzymes have been found in higher plants. In the last decade, six receptor proteins from Arabidopsis thaliana have been reported to have guanylate cyclase activity in vitro. Of the six receptors, one was shown to be a NO dependent guanylate cyclase enzyme (NOGC1). However, the role of these proteins in planta remains to be elucidated. Enzymes involved in the degradation of cGMP remain elusive, albeit, PDE activity has been detected in crude protein extracts from various plants. Additionally, several research groups have partially purified and characterized PDE enzymatic activity from crude protein extracts. In this review, we focus on presenting advances toward the identification of enzymes involved in the cGMP metabolism pathway in higher plants.
Collapse
Affiliation(s)
- Inonge Gross
- Nitric Oxide Production and Signalling Group, Institute of Biochemical Plant Pathology, Helmholtz Center MunichGermany
- *Correspondence: Inonge Gross,
| | - Jörg Durner
- Nitric Oxide Production and Signalling Group, Institute of Biochemical Plant Pathology, Helmholtz Center MunichGermany
- Chair of Biochemical Plant Pathology, Technische Universität München, FreisingGermany
| |
Collapse
|