1
|
Sahrin NT, Khoo KS, Masri AN, Rawindran H, Tong WY, Altaf M, Sin JC, Lam SM, Bashir MJ, Lim JW. Enhancing microalgal hydrogen production via photo-fermentative modelling with alimentation derived from palm kernel expeller. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2024; 72:388-394. [DOI: 10.1016/j.ijhydene.2024.05.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
2
|
Agrawal A, Chaudhari PK, Ghosh P. Anaerobic digestion of fruit and vegetable waste: a critical review of associated challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24987-25012. [PMID: 35781666 DOI: 10.1007/s11356-022-21643-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The depletion of fossil fuels coupled with stringent environmental laws has encouraged us to develop sustainable renewable energy. Due to its numerous benefits, anaerobic digestion (AD) has emerged as an environment-friendly technology. Biogas generated during AD is primarily a mixture of CH4 (65-70%) and CO2 (20-25%) and a potent energy source that can combat the energy crisis in today's world. Here, an attempt has been made to provide a broad understanding of AD and delineate the effect of various operational parameters influencing AD. The characteristics of fruit and vegetable waste (FVW) and its feasibility as a potent substrate for AD have been studied. This review also covers traditional challenges in managing FVW via AD, the implementation of various bioreactor systems to manage large amounts of organic waste and their operational boundaries, microbial consortia involved in each phase of digestion, and various strategies to increase biogas production.
Collapse
Affiliation(s)
- Akanksha Agrawal
- Department of Chemical Engineering, National Institute of Technology, Raipur, C.G, India
| | | | - Prabir Ghosh
- Department of Chemical Engineering, National Institute of Technology, Raipur, C.G, India.
| |
Collapse
|
3
|
Leong YK, Chang JS. Valorization of fruit wastes for circular bioeconomy: Current advances, challenges, and opportunities. BIORESOURCE TECHNOLOGY 2022; 359:127459. [PMID: 35700899 DOI: 10.1016/j.biortech.2022.127459] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The demands for fruits and processed products have significantly increased following the surging human population growth and rising health awareness. However, an enormous amount of fruit waste is generated during their production life-cycle due to the inedible portion and perishable nature, which become a considerable burden to the environment. Embracing the concept of "circular economy", these fruit wastes represent sustainable and renewable resources and can be integrated into biorefinery platforms for valorization into a wide range of high-value products. To fully realize the potential of fruit waste in circular bioeconomy and provide insights on future commercial-scale applications, this review presented the recycling and utilization of fruit wastes in various applications, particularly focusing on pollutant bioremediation, renewable energy and biofuel production, biosynthesis of bioactive compounds and low-cost microbial growth media. Furthermore, the challenges of efficient valorization of fruit wastes were discussed and future prospects were proposed.
Collapse
Affiliation(s)
- Yoong Kit Leong
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
4
|
Management of the Organic Fraction of Municipal Solid Waste in the Context of a Sustainable and Circular Model: Analysis of Trends in Latin America and the Caribbean. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106041. [PMID: 35627577 PMCID: PMC9142004 DOI: 10.3390/ijerph19106041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 12/17/2022]
Abstract
The main objective of this research is to analyze the most relevant aspects of the management of the organic fraction of municipal solid waste (OFMSW) and the Sustainable and Circular Production Models (SCPMs) in Latin America and the Caribbean (LAC). The bibliometric method was used for the analysis of 190 studies obtained from the Scopus and Latin America and The Caribbean on Health Sciences (LILACS) databases. The systematic review provided information on the main research approaches: identification and characterization; quantification; strategic and interdisciplinary management; and processes for treatment or valorization. Finally, an evaluation of public policies and strategies was performed. The results show that Brazil, Mexico, and Colombia have the highest number of publications on OFMSW. The findings also indicate that both research and policy strategies on SCPMs prioritize bioenergy and biofuels as the leading alternatives for the valorization of OFMSW. It also reflects the relevance of the Circular Economy (CE) and Bioeconomy (BE) as the main drivers of waste recovery and/or valorization in LAC. These aspects are of great interest to governments that are still in the process of implementing SCPMs. However, for those more advanced in this area, it provides valuable information on progress, policy effectiveness, and future actions for improvement.
Collapse
|
5
|
Zhang Z, Xu C, Zhang Y, Lu S, Guo L, Zhang Y, Li Y, Hu B, He C, Zhang Q. Cohesive strategy and energy conversion efficiency analysis of bio-hythane production from corncob powder by two-stage anaerobic digestion process. BIORESOURCE TECHNOLOGY 2020; 300:122746. [PMID: 31956057 DOI: 10.1016/j.biortech.2020.122746] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
In order to maximize the substrate conversion, co-production of hydrogen and methane from two-stage anaerobic digestion has attracted wide attention. In two-stage fermentation process, the cohesive strategy is considered as a key indicator for bio-hythane yield. In this work, corncob powder was utilized as raw material. The pH of fermentative broth, bio-hythane yield, gas production rate and energy conversion efficiency were taken as indexes. Under the directional control of bio-chemical reaction process, the effects of diverse coupling time nodes on the fermentation process and the bio-hythane co-production potential were investigated. The results showed that when the coupling time node was 48 h, hydrogen production potential and methane production potential were 22.29 mL/g TS and 141.14 mL/g TS, respectively. The hydrogen content in the bio-hythane was 13.64% which satisfied the hydrogen concentration requirement, and the energy conversion efficiency was 27.6%.
Collapse
Affiliation(s)
- Zhiping Zhang
- Henan Agricultural University, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Zhengzhou 450002, PR China
| | - Congcong Xu
- Henan Agricultural University, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Zhengzhou 450002, PR China
| | - Yue Zhang
- Henan Agricultural University, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Zhengzhou 450002, PR China
| | - Shijie Lu
- Henan Agricultural University, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Zhengzhou 450002, PR China
| | - Lingkong Guo
- Henan Agricultural University, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Zhengzhou 450002, PR China
| | - Yan Zhang
- Henan Agricultural University, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Zhengzhou 450002, PR China
| | - Yameng Li
- Henan Agricultural University, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Zhengzhou 450002, PR China
| | - Bing Hu
- Henan Agricultural University, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Zhengzhou 450002, PR China
| | - Chao He
- Henan Agricultural University, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Zhengzhou 450002, PR China
| | - Quanguo Zhang
- Henan Agricultural University, Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Zhengzhou 450002, PR China.
| |
Collapse
|
6
|
Effect of Carbon/Nitrogen Ratio, Temperature, and Inoculum Source on Hydrogen Production from Dark Codigestion of Fruit Peels and Sewage Sludge. SUSTAINABILITY 2019. [DOI: 10.3390/su11072139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper studies the use of fruit peel biomass and waste sludge from municipal wastewater treatment plants in the metropolitan area of Monterrey, Mexico as an alternative way of generating renewable energy. Using a Plackett–Burman experimental design, we investigated the effects of temperature, inoculum source, and the C/N (Carbon/Nitrogen) ratio on dark fermentation (DF). The results indicate that it is possible to produce hydrogen using fruit peels codigested with sewage sludge. By adjusting the C/N ratio in response to the physicochemical characterization of the substrates, it was revealed that the quantities of carbohydrates and nitrogen were sufficient for the occurrence of the fermentation process with biogas production greater than 2221 ± 5.8 mL L−1Reactor and hydrogen selectivity of 23% (366 ± 1 mL H2·L−1Reactor) at the central point. The kinetic parameters (Hmax= 86.6 mL·L−1, Rm = 2.6 mL L−1 h−1, and λ = 1.95 h) were calculated using the modified Gompertz model. The quantification of soluble metabolites, such as acetic acid (3600 mg L−1) and ethyl alcohol (3.4 ± 0.25% v/v), confirmed the presence of acetogenesis in the generation of hydrogen.
Collapse
|
7
|
Garcia-Peña EI, Niño-Navarro C, Chairez I, Torres-Bustillos L, Ramírez-Muñoz J, Salgado-Manjarrez E. Performance intensification of a stirred bioreactor for fermentative biohydrogen production. Prep Biochem Biotechnol 2018; 48:64-74. [DOI: 10.1080/10826068.2017.1405269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- E. I. Garcia-Peña
- Department of Bioprocesses, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City, Mexico
| | - C. Niño-Navarro
- Department of Bioprocesses, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City, Mexico
| | - I. Chairez
- Department of Bioprocesses, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City, Mexico
| | - L. Torres-Bustillos
- Department of Bioprocesses, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City, Mexico
| | - J. Ramírez-Muñoz
- Department of Energy, Universidad Autónoma Metropolitana-Azcapotzalco, Mexico City, Mexico
| | - E. Salgado-Manjarrez
- Department of Bioengineering, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
8
|
Controlled continuous bio-hydrogen production using different biogas release strategies. Appl Biochem Biotechnol 2014; 173:1737-51. [PMID: 24879593 DOI: 10.1007/s12010-014-0961-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022]
Abstract
Dark fermentation for bio-hydrogen (bio-H2) production is an easily operated and environmentally friendly technology. However, low bio-H2 production yield has been reported as its main drawback. Two strategies have been followed in the past to improve this fact: genetic modifications and adjusting the reaction conditions. In this paper, the second one is followed to regulate the bio-H2 release from the reactor. This operating condition alters the metabolic pathways and increased the bio-H2 production twice. Gas release was forced in the continuous culture to study the equilibrium in the mass transfer between the gaseous and liquid phases. This equilibrium depends on the H2, CO2, and volatile fatty acids production. The effect of reducing the bio-H2 partial pressure (bio-H2 pp) to enhance bio-H2 production was evaluated in a 30 L continuous stirred tank reactor. Three bio-H2 release strategies were followed: uncontrolled, intermittent, and constant. In the so called uncontrolled fermentation, without bio-H2 pp control, a bio-H2 molar yield of 1.2 mol/mol glucose was obtained. A sustained low bio-H2 pp of 0.06 atm increased the bio-H2 production rate from 16.1 to 108 mL/L/h with a stable bio-H2 percentage of 55% (v/v) and a molar yield of 1.9 mol/mol glucose. Biogas release enhanced bio-H2 production because lower bio-H2 pp, CO2 concentration, and reduced volatile fatty acids accumulation prevented the associated inhibitions and bio-H2 consumption.
Collapse
|