1
|
Bacillus velezensis Identification and Recombinant Expression, Purification, and Characterization of Its Alpha-Amylase. FERMENTATION 2021. [DOI: 10.3390/fermentation7040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Amylases account for about 30% of the global market of industrial enzymes, and the current amylases cannot fully meet industrial needs. This study aimed to identify a high α-amylase producing bacterium WangLB, to clone its α-amylase coding gene, and to characterize the α-amylase. Results showed that WangLB belonged to Bacillus velezensis whose α-amylase gene was 1980 bp coding 659 amino acids designated as BvAmylase. BvAmylase was a hydrophilic stable protein with a signal peptide and a theoretical pI of 5.49. The relative molecular weight of BvAmylase was 72.35 kDa, and was verified by SDS-PAGE. Its modeled structure displayed that it was a monomer composed of three domains. Its optimum temperature and pH were 70 °C and pH 6.0, respectively. It also showed high activity in a wide range of temperatures (40–75 °C) and a relatively narrow pH (5.0–7.0). It was a Ca2+-independent enzyme, whose α-amylase activity was increased by Co2+, Tween 20, and Triton X-100, and severely decreased by SDS. The Km and the Vmax of BvAmylase were 3.43 ± 0.53 and 434.19 ± 28.57 U/mg. In conclusion, the α-amylase producing bacterium WangLB was identified, and one of its α-amylases was characterized, which will be a candidate enzyme for industrial applications.
Collapse
|
2
|
Wang YC, Hu HF, Ma JW, Yan QJ, Liu HJ, Jiang ZQ. A novel high maltose-forming α-amylase from Rhizomucor miehei and its application in the food industry. Food Chem 2019; 305:125447. [PMID: 31499289 DOI: 10.1016/j.foodchem.2019.125447] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022]
Abstract
A novel α-amylase gene (RmAmyA) from Rhizomucor miehei was cloned and expressed in Pichia pastoris. RmAmyA showed 70% amino acid identity with the α-amylase from Rhizomucor pusillus. A high α-amylase activity of 29,794.2 U/mL was found through high cell density fermentation. The molecular mass of RmAmyA was determined to be 49.9 kDa via SDS-PAGE. RmAmyA was optimally active at 75 °C and pH 6.0, and it did not require Ca2+ to improve its activity. It exhibited broad substrate specificity towards amylose, amylopectin, soluble starch, pullulan, and cyclodextrins. High level of maltose (54%, w/w) was produced after liquefied starch was hydrolysed with RmAmyA for 16 h. Moreover, the addition of RmAmyA into Chinese steamed bread resulted in 7.7% increment in the specific volume, and 17.2% and 11.5% reduction in the chewiness and hardness, respectively. These results indicate that RmAmyA might be a potential candidate for applications in the food industry.
Collapse
Affiliation(s)
- Yu-Chuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hui-Fang Hu
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jun-Wen Ma
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Qiao-Juan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Hai-Jie Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Zheng-Qiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Arabacı N, Arıkan B. An amylopullulanase (ApuNP1) from Geobacillus thermoleovorans NP1: biochemical characterization and its potential industrial applications. Prep Biochem Biotechnol 2019; 49:127-135. [PMID: 30620883 DOI: 10.1080/10826068.2018.1550655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An amylopullulanase was produced by Geobacillus thermoleovorans NP1. The optimum enzyme production occurred at 45°C and pH 7.0 (12 hr). NP1 amylopullulanase (ApuNP1) exhibited the maximal activity at 50°C and pH 6.0 and was stable between 30-50°C, and pH 3.0-12.0 for 24 hr. The enzyme showed two bands with molecular weights of 112 and 107 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The amylopullulanase retained 100% of its activity in the presence of 10 mM of Ca2+, Ba2+, Zn2+, Mg2+, Cu2+, EDTA, and PMSF. While the enzyme showed resistance to 5% of TritonX-100, Tween 20, and Tween 80, the activity was inhibited by 5% β-mercaptoethanol and H2O2. While the hydrolysis products of pullulan were maltose, maltotriose, and maltodextrin, the starch was hydrolyzed to maltose, maltotriose, and maltodextrin units. This shows that NP1 pullulanase is a type II pullulanase (amylopullulanase). After the liquefaction assay, 12% glucose content was measured with a refractometer in the presence of 20% starch. According to the wash performance tests, the mixture of ApuNP1 and 1% detergent removed almost all of the stains. This novel thermo-acidic amylopullulanase has a potency to be used in detergent, starch, food, baking, textile, and cosmetic industries.
Collapse
Affiliation(s)
- Nihan Arabacı
- a Department of Biology , Çukurova University , Adana , Turkey
| | - Burhan Arıkan
- a Department of Biology , Çukurova University , Adana , Turkey
| |
Collapse
|
4
|
Wu H, Tian X, Dong Z, Zhang Y, Huang L, Liu X, Jin P, Lu F, Wang Z. Engineering of Bacillus amyloliquefaciens
α-Amylase with Improved Calcium Independence and Catalytic Efficiency by Error-Prone PCR. STARCH-STARKE 2017. [DOI: 10.1002/star.201700175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Haiyang Wu
- H. Wu, X. Tian, Dr. Z. Dong, Prof. X. Liu, Dr. P. Jin, Prof. Z. Wang; Department of Biological Chemical Engineering; College of Chemical Engineering and Materials Science; Tianjin University of Science and Technology; Tianjin 300457 China
- H. Wu, X. Tian, Y. Zhang, L. Huang, Prof. F. Lu, Prof. Z. Wang; College of Biotechnology; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Xiaojing Tian
- H. Wu, X. Tian, Dr. Z. Dong, Prof. X. Liu, Dr. P. Jin, Prof. Z. Wang; Department of Biological Chemical Engineering; College of Chemical Engineering and Materials Science; Tianjin University of Science and Technology; Tianjin 300457 China
- H. Wu, X. Tian, Y. Zhang, L. Huang, Prof. F. Lu, Prof. Z. Wang; College of Biotechnology; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Zixing Dong
- H. Wu, X. Tian, Dr. Z. Dong, Prof. X. Liu, Dr. P. Jin, Prof. Z. Wang; Department of Biological Chemical Engineering; College of Chemical Engineering and Materials Science; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Yongjie Zhang
- H. Wu, X. Tian, Y. Zhang, L. Huang, Prof. F. Lu, Prof. Z. Wang; College of Biotechnology; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Lei Huang
- H. Wu, X. Tian, Y. Zhang, L. Huang, Prof. F. Lu, Prof. Z. Wang; College of Biotechnology; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Xiaoguang Liu
- H. Wu, X. Tian, Dr. Z. Dong, Prof. X. Liu, Dr. P. Jin, Prof. Z. Wang; Department of Biological Chemical Engineering; College of Chemical Engineering and Materials Science; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Peng Jin
- H. Wu, X. Tian, Dr. Z. Dong, Prof. X. Liu, Dr. P. Jin, Prof. Z. Wang; Department of Biological Chemical Engineering; College of Chemical Engineering and Materials Science; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Fuping Lu
- H. Wu, X. Tian, Y. Zhang, L. Huang, Prof. F. Lu, Prof. Z. Wang; College of Biotechnology; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Zhengxiang Wang
- H. Wu, X. Tian, Dr. Z. Dong, Prof. X. Liu, Dr. P. Jin, Prof. Z. Wang; Department of Biological Chemical Engineering; College of Chemical Engineering and Materials Science; Tianjin University of Science and Technology; Tianjin 300457 China
- H. Wu, X. Tian, Y. Zhang, L. Huang, Prof. F. Lu, Prof. Z. Wang; College of Biotechnology; Tianjin University of Science and Technology; Tianjin 300457 China
| |
Collapse
|
5
|
Santorelli M, Maurelli L, Pocsfalvi G, Fiume I, Squillaci G, La Cara F, Del Monaco G, Morana A. Isolation and characterisation of a novel alpha-amylase from the extreme haloarchaeon Haloterrigena turkmenica. Int J Biol Macromol 2016; 92:174-184. [PMID: 27377461 DOI: 10.1016/j.ijbiomac.2016.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
Abstract
An extracellular halophilic alpha-amylase (AmyA) was produced by the haloarchaeon Haloterrigena turkmenica grown in medium enriched with 0.2% (w/v) starch. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion chromatography (SEC) analyses showed a major band at 66.0kDa and a peak of 54.0kDa, respectively. Analysis of tryptic fragments of the protein present in the major SDS-PAGE band by nano-LC-ESI-MS/MS led to identification of the alpha-amylase catalytic region, encoded by the htur2110 gene, as the protein possessing the described activity. Optimal values for activity were 55°C, pH 8.5 and 2M NaCl, and high thermostability was showed at 55°C and 3M NaCl. AmyA activity was enhanced by Triton X-100 and was not influenced by n-hexane and chloroform. Starch hydrolysis produced different oligomers with maltose as the smallest end-product. The efficiency of AmyA in degrading starch contained in agronomic residues was tested in grape cane chosen as model substrate. Preliminary results showed that starch was degraded making the enzyme a potential candidate for utilization of agro-industrial waste in fuel and chemicals production. AmyA is one of the few investigated amylases produced by haloarchaea, and the first alpha-amylase described among microorganisms belonging to the genus Haloterrigena.
Collapse
Affiliation(s)
- Marco Santorelli
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", P.le Tecchio 80, 80125 Napoli, Italy
| | - Luisa Maurelli
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Gabriella Pocsfalvi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Immacolata Fiume
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giuseppe Squillaci
- Institute of Agro-environmental and Forest Biology, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Francesco La Cara
- Institute of Agro-environmental and Forest Biology, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni Del Monaco
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Alessandra Morana
- Institute of Agro-environmental and Forest Biology, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy.
| |
Collapse
|