1
|
Synthesis, characterization, antimicrobial activity and DNA/BSA interaction of functionalized graphene oxide nanoparticles with 2-(ferrocenylmethylamino) benzonitrile. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
2
|
Oyeka EE, Babahan I, Eboma B, Ifeanyieze KJ, Okpareke OC, Coban EP, Özmen A, Coban B, Aksel M, Özdemir N, Groutso T, Ayogu JI, Yildiz U, Dinçer Bilgin M, Halil Biyik H, Schrage BR, Ziegler CJ, Asegbeloyin JN. Biologically active acylthioureas and their Ni(II) and Cu(II) Complexes: Structural, spectroscopic, anti-proliferative, nucleolytic and antimicrobial studies. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
Coban B, Saka E, Yıldız U, Akkoç S. DNA Interactions and Antiproliferative Activity Studies of Octahedral Nickel Complexes of Two Extended Phenanthrolines. ChemistrySelect 2021. [DOI: 10.1002/slct.202102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Burak Coban
- Department of Chemistry Faculty of Arts and Sciences Zonguldak Bülent Ecevit University Zonguldak 67100 Turkey
| | - Engin Saka
- Department of Chemistry Faculty of Arts and Sciences Zonguldak Bülent Ecevit University Zonguldak 67100 Turkey
| | - Ufuk Yıldız
- Department of Chemistry Faculty of Arts and Sciences Zonguldak Bülent Ecevit University Zonguldak 67100 Turkey
| | - Senem Akkoç
- Department of Basic Pharmaceutical Sciences Faculty of Pharmacy Süleyman Demirel University Isparta 32260 Turkey
| |
Collapse
|
4
|
Synthesis of novel selenotetrazole purine derivatives and their potential chemotherapeutic activities. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Caymaz B, Yıldız U, Akkoç S, Gerçek Z, Şengül A, Coban B. Synthesis, Characterization, and Antiproliferative Activity Studies of Novel Benzimidazole‐Imidazopyridine Hybrids as DNA Groove Binders. ChemistrySelect 2020. [DOI: 10.1002/slct.202001580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bahar Caymaz
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| | - Ufuk Yıldız
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| | - Senem Akkoç
- Department of Basic Pharmaceutical SciencesFaculty of PharmacySüleyman Demirel University Isparta 32260 Turkey
| | - Zuhal Gerçek
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| | - Abdurrahman Şengül
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| | - Burak Coban
- Zonguldak Bülent Ecevit UniversityFaculty of Arts and SciencesDepartment of Chemistry 67100 Zonguldak Turkey
| |
Collapse
|
6
|
Yildiz U, Kandemir I, Cömert F, Akkoç S, Coban B. Synthesis of naphthalimide derivatives with potential anticancer activity, their comparative ds- and G-quadruplex-DNA binding studies and related biological activities. Mol Biol Rep 2020; 47:1563-1572. [PMID: 32095985 DOI: 10.1007/s11033-019-05239-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 01/12/2023]
Abstract
Two new cytotoxic 1,8-naphthalimide derivatives have been synthesized and characterized. Their biological activities as cytotoxicity and antimicrobial activities and inhibitory activities against DNA-polymerase were evaluated. The interactions of compounds with double-stranded- and quadruple-DNA have been studied by UV-Vis, fluorescent intercalator displacement, competition dialysis, circular dichroism and the findings were compared with the parent naphthalimide and the other compounds. The results show that both compounds (1 and 2) and the parent compound NI have strong cytotoxic activities against Beas-2B, MCF-7, HepG2 and MDA-MB-231 cancer cell lines, antimicrobial activities against Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212 and inhibitory activities towards Taq-polymerase and transcriptase. These novel cationic compounds 1 and 2 can stabilize G-quadruplexes DNA according to thermal denaturation experiments, they change the 3D structure of the DNA (see details in CD experiments) and they exhibit different binding affinities for q-DNA and ds-DNA revealed by spectrophotometric titrations and competitive dialysis studies.
Collapse
Affiliation(s)
- Ufuk Yildiz
- Department of Chemistry, Faculty of Arts and Sciences, Zonguldak Bulent Ecevit University, 67100, Zonguldak, Turkey
| | - Irfan Kandemir
- Department of Biology, Faculty of Science, Ankara University, 06100, Tandoğan, Ankara, Turkey
| | - Füsun Cömert
- Department of Microbiology, Faculty of Medicine, Bulent Ecevit University, 67600, Kozlu, Zonguldak, Turkey
| | - Senem Akkoç
- Department of Chemistry, Faculty of Science, Erciyes University, 38030, Melikgazi, Kayseri, Turkey.,Faculty of Pharmacy, Süleyman Demirel University, 32260, Isparta, Turkey
| | - Burak Coban
- Department of Chemistry, Faculty of Arts and Sciences, Zonguldak Bulent Ecevit University, 67100, Zonguldak, Turkey.
| |
Collapse
|
7
|
Shiekhzadeh A, Sohrabi N, Moghadam ME, Oftadeh M. Kinetic and Thermodynamic Investigation of Human Serum Albumin Interaction with Anticancer Glycine Derivative of Platinum Complex by Using Spectroscopic Methods and Molecular Docking. Appl Biochem Biotechnol 2019; 190:506-528. [PMID: 31388926 DOI: 10.1007/s12010-019-03078-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/05/2019] [Indexed: 01/08/2023]
Abstract
In this paper, a new anticancer Pt (II) complex, cis-[Pt (NH3)2(tertpentylgly)]NO3, was synthesized with glycine-derivative ligand and characterized. Cytotoxicity of this water-soluble Pt complex was studied against human cancer breast cell line of MCF-7. The interaction of human serum albumin (HSA) with Pt complex was studied by using UV-Vis, fluorescence spectroscopy methods, and molecular docking at 27 and 37 °C in the physiological situation (I = 10 mM, pH = 7.4). The negative [Formula: see text] and positive [Formula: see text] indicated that electrostatic force may be a major mode in the binding between Pt complex and HSA. Binding constant values were obtained through UV-Vis and fluorescence spectroscopy that reveal strong interaction. The negative Gibbs free energy that was obtained by using the UV-Vis method offers spontaneous interaction. Fluorescence quenching the intensity of HSA by adding Pt complex confirms the static mode of interaction is effective for this binding process. Hill coefficients, nH, Hill constant, kH, complex aggregation number around HSA, <J>, number of binding sites, g, HSA melting temperature, Tm, and Stern-Volmer constant, kSV, were also obtained. The kinetics of the interaction was studied, which showed a second-order kinetic. The results of molecular docking demonstrate the position of binding of Pt complex on HSA is the site I in the subdomain IIA.
Collapse
Affiliation(s)
| | - Nasrin Sohrabi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran.
| | | | - Mohsen Oftadeh
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| |
Collapse
|
8
|
The comparative study of the DNA binding and biological activities of the quaternized dicnq as a dicationic form and its platinum(II) heteroleptic cationic complex. Bioorg Chem 2019; 87:70-77. [PMID: 30878811 DOI: 10.1016/j.bioorg.2019.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022]
Abstract
The square-planar heteroleptic Pt(II) coordination compound [Pt(bpy)(dicnq)](NO3)2 (1) and the quaternized dicnq ligand, namely 12,13-dicyano-5,6-dihydrodipyrazino[2,3-f:1',2',3',4'-lmn][1,10]phenanthroline-4,7-diium dibromide (2) (Fig. 1) were synthesized and fully characterized by means of FTIR, NMR, MALDI-TOF MS and the purity was confirmed by CHN analyses. The DNA binding profiles of 1 and 2 were identified in an identical condition. The biological activities of these compounds were investigated by the assays of transcription and replication inhibition, cytotoxic and antimicrobial activity. The result of this study indicates that, both compounds strongly bind to DNA via intercalation but only 1 has a strong nuclease activity. The coordination compound of dicnq (1) binds to the DNA only slightly stronger than the quaternized form of dicnq (2), and is more potent as an inhibitor of transcription and replication and therefore, 1 has more potential as an anticancer agent but the compounds did not show cytotoxic activity against MCF-7 and MDA-MB-231 breast cancer, and DLD-1 colon cancer cell lines it was found that they only had activities against HepG2 liver cancer cell line with following IC50 values; 94.75 and 159.60 µM for 1 and 2, respectively. In addition, tested bacteria are more susceptible to compound 1. These biological activities of 1 may strongly be due to its ability to digest DNA as a chemical nuclease. According to this study, the quaternization of the ligand does not make biologically more active than the coordination compound of the same ligand in this case. The compound (1) is worth further investigation for its antitumor activities.
Collapse
|
9
|
Novel Naphthalimide Derivatives as Selective G-Quadruplex DNA Binders. Appl Biochem Biotechnol 2018; 186:547-562. [PMID: 29671192 DOI: 10.1007/s12010-018-2749-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/25/2018] [Indexed: 01/08/2023]
Abstract
A new derivate of 4-bromo-1,8-naphthalic anhydride and its quaternized analogue have been prepared and characterized. The interactions of both derivatives with human telomere quadruplex-DNA and ds-DNA have been comparatively studied by UV-visible (UV-Vis), fluorescent intercalator displacement assays, competition dialysis, circular dichroism (CD), agarose gel electrophoresis, and polyacrylamide gel electrophoresis. The results show that both derivatives can stabilize G-quadruplexes DNA, and they show different binding affinities for G-quadruplexes-DNA and ds-DNA. All spectroscopic studies have shown that the derivatives have a modest selectivity for G-quadruplex versus ds-DNA.
Collapse
|
10
|
An electrochemical biosensor for direct detection of DNA using polystyrene-g-soya oil-g-imidazole graft copolymer. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3504-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
DNA as a Target for Anticancer Phen-Imidazole Pd(II) Complexes. Appl Biochem Biotechnol 2016; 182:110-127. [DOI: 10.1007/s12010-016-2314-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/30/2016] [Indexed: 01/29/2023]
|
12
|
Coban B, Tekin IO, Sengul A, Yildiz U, Kocak I, Sevinc N. DNA studies of newly synthesized heteroleptic platinum(II) complexes [Pt(bpy)(iip)](2+) and [Pt(bpy)(miip)](2.). J Biol Inorg Chem 2015; 21:163-75. [PMID: 26626200 DOI: 10.1007/s00775-015-1317-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022]
Abstract
Two new mono-nuclear heteroleptic platinum(II) complexes, [Pt(bpy)(iip)](PF6)2 (1) and [Pt(bpy)(miip)](PF6)2·2H2O (2) (bpy is 2,2'-bipyridine; iip is 2-(imidazo-4-yl)-1H-imidazo[4,5-f] [1,10] phenanthroline; miip is 2-(1-methylimidazo-2-yl)-1H-imidazo[4,5-f] [1, 10] phenanthroline), have been synthesized and fully characterized by CHN analysis, electrospray ionization and MALDI-TOF mass spectrometry, (1)H NMR, FT-IR (ATR), and UV-Vis spectrophotometer. Cytotoxicity, ability to inhibit DNA transcription and DNAse activity of the complexes were studied. The DNA-binding behaviors of both complexes have also been studied by spectroscopic methods, cyclic voltammetry and viscosity measurements. Both complexes showed cytotoxic properties and 2 was more cytotoxic than 1. DNA transcription was inhibited upon increasing concentrations of both complexes. The complex 2 was found to be a better inhibitor than 1. The same pattern can be seen in the DNAse profile of the complexes. In addition, 2 was found to promote cleavage of pBR322 DNA at a lower concentration than 1. The spectroscopic, electrochemical and viscometric results indicate that both complexes show some degree of binding to DNA in an intercalative mode, resulting in intrinsic binding constants K b = 3.55 ± 0.6 × 10(4) M(-1) and 7.01 ± 0.9 × 10(4) M(-1) for 1 and 2, respectively. The difference in the DNA-binding affinities of 1 and 2 may presumably be explained by the methylated imidazole nitrogen atom that makes the compound more hydrophobic and gives better intercalative binding ability to DNA's hydrophobic environment.
Collapse
Affiliation(s)
- Burak Coban
- Department of Chemistry, Faculty of Arts and Sciences, Bulent Ecevit University, 67100, Zonguldak, Turkey.
| | - Ishak Ozel Tekin
- Department of Immunology, Faculty of Medicine, Bulent Ecevit University, 67100, Zonguldak, Turkey
| | - Abdurrahman Sengul
- Department of Chemistry, Faculty of Arts and Sciences, Bulent Ecevit University, 67100, Zonguldak, Turkey
| | - Ufuk Yildiz
- Department of Chemistry, Faculty of Arts and Sciences, Bulent Ecevit University, 67100, Zonguldak, Turkey
| | - Izzet Kocak
- Department of Chemistry, Faculty of Arts and Sciences, Bulent Ecevit University, 67100, Zonguldak, Turkey
| | - Nergis Sevinc
- Department of Immunology, Faculty of Medicine, Bulent Ecevit University, 67100, Zonguldak, Turkey
| |
Collapse
|
13
|
Kocak I, Yildiz U, Coban B, Sengul A. DNA-binding studies of complex of Pt(bpy)(pip)]2+ and [Pt(bpy)(hpip)]2+ by electrochemical methods: development of an electrochemical DNA biosensor. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2859-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Gao Y, Li H, Yin S, Liu G, Cao L, Li Y, Wang X, Ou Z, Wang X. Supramolecular electron donor–acceptor complexes formed by perylene diimide derivative and conjugated phenazines. NEW J CHEM 2014. [DOI: 10.1039/c4nj01083c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nanostructure and binding mode of the perylene diimide–phenazine complex can be modulated by the phenazine derivative substituents.
Collapse
Affiliation(s)
- Yunyan Gao
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
| | - Huizhen Li
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
| | - Shiwei Yin
- Key Laboratory for Macromolecular Science of Shaanxi Province
- School of Chemistry & Chemical Engineering
- Shaanxi Normal University
- Xi'an City, People's Republic of China
| | - Guixia Liu
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
| | - Lu Cao
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
| | - Yi Li
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing, People's Republic of China
| | - Xuesong Wang
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing, People's Republic of China
| | - Zhize Ou
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
| | - Xin Wang
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education
- Department of Applied Chemistry
- School of Science
- Northwestern Polytechnical University
| |
Collapse
|