1
|
Zheng J, You J, Zhang D, Zhang X, Chen F, Yang T, Xu M, Hu Y, Rao Z. Pre-optimization and one-step preparation of cascade enzymes system with broad substrates by model guidance: Application of chiral L-norvaline and L-phenylglycine biosynthesis. BIORESOURCE TECHNOLOGY 2024; 393:130125. [PMID: 38040317 DOI: 10.1016/j.biortech.2023.130125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Cascade biocatalyst systems with catalytic promiscuity can be used for synthesis of a class of chiral chemicals but the optimization of these systems by model guidance is poorly explored. In this study, a cascade system with broad substrate spectrum was characterized and simulated by kinetic model with substrates of DL-Norvaline (DL-Nor) and DL-Phenylglycine (DL-Phg) as examples. To evaluate the optimal cascade system, maximum accumulation of intermediate products and conversion rate in the process were investigated by simultaneous solution of the rate equations for varying enzyme quantities. According to the simulation results, the cascade system was optimized by regulating the expression of D-amino acid oxidase and formate dehydrogenase and was prepared by one-step. The conversion efficiency of DL-Nor and DL-Phg have been significantly improved compared with that of before optimization. Moreover, the total of L-Nor and L-Phg were reached 498.2 mM and 79.5 mM through a gradient fed-batch conversion strategy, respectively.
Collapse
Affiliation(s)
- Junxian Zheng
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, Fujian, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Danfeng Zhang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, Fujian, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Fan Chen
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, Fujian, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Yuanqing Hu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, Fujian, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
2
|
Fabrication of a porous polymer membrane enzyme reactor and its enzymatic kinetics study in an artificial kidney model. Talanta 2020; 216:120963. [PMID: 32456898 DOI: 10.1016/j.talanta.2020.120963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 01/05/2023]
Abstract
A porous polymer membrane-based d-amino acid oxidase (DAAO) reactor was developed that mimicked enzymatic activity in a renal ischemia model. Using glycidyl methacrylate as a biocompatible reactive monomer, poly(styrene-glycidyl methacrylate) was synthesized via a reversible addition fragment chain transfer polymerization technique. The prepared porous polymer membrane was used as a support to effectively immobilize DAAO. Compared to DAAO modified on nonporous polymer membrane and free DAAO in solution, the constructed porous polymer membrane-based DAAO enzyme reactor displayed 3-fold and 19-fold increase in enzymolysis efficiency, respectively. In addition, a chiral ligand exchange capillary electrophoresis system for DAAO was used to study DAAO enzymatic kinetics with d,l-methionine as the substrate. The proposed porous polymer membrane-based enzyme reactor showed excellent performance both on reproducibility and stability. Moreover, the enzyme reactor was successfully applied to mimic DAAO activity in a renal ischemia model. These results demonstrated that the enzyme could be efficiently immobilized onto a porous polymer membrane as an enzyme reactor and has great potential in mimicking the enzymatic activity in kidney.
Collapse
|
3
|
Abstract
Dextran aldehyde (dexOx), resulting from the periodate oxidative cleavage of 1,2-diol moiety inside dextran, is a polymer that is very useful in many areas, including as a macromolecular carrier for drug delivery and other biomedical applications. In particular, it has been widely used for chemical engineering of enzymes, with the aim of designing better biocatalysts that possess improved catalytic properties, making them more stable and/or active for different catalytic reactions. This polymer possesses a very flexible hydrophilic structure, which becomes inert after chemical reduction; therefore, dexOx comes to be highly versatile in a biocatalyst design. This paper presents an overview of the multiple applications of dexOx in applied biocatalysis, e.g., to modulate the adsorption of biomolecules on carrier surfaces in affinity chromatography and biosensors design, to serve as a spacer arm between a ligand and the support in biomacromolecule immobilization procedures or to generate artificial microenvironments around the enzyme molecules or to stabilize multimeric enzymes by intersubunit crosslinking, among many other applications.
Collapse
|
4
|
Accelerating the implementation of biocatalysis in industry. Appl Microbiol Biotechnol 2019; 103:4733-4739. [PMID: 31049622 DOI: 10.1007/s00253-019-09796-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 01/26/2023]
Abstract
Despite enormous progress in protein engineering, complemented by bioprocess engineering, the revolution awaiting the application of biocatalysis in the fine chemical industry has still not been fully realized. In order to achieve that, further research is required on several topics, including (1) rapid methods for protein engineering using machine learning, (2) mathematical modelling of multi-enzyme cascade processes, (3) process standardization, (4) continuous process technology, (5) methods to identify improvements required to achieve industrial implementation, (6) downstream processing, (7) enzyme stability modelling and prediction, as well as (8) new reactor technology. In this brief mini-review, the status of each of these topics will be briefly discussed.
Collapse
|
5
|
Dias Gomes M, Bommarius BR, Anderson SR, Feske BD, Woodley JM, Bommarius AS. Bubble Column Enables Higher Reaction Rate for Deracemization of (
R,S
)‐1‐Phenylethanol with Coupled Alcohol Dehydrogenase/NADH Oxidase System. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mafalda Dias Gomes
- Department of Chemical and Biochemical Engineering Technical University of Denmark Building 229, Søltofts Plads DK-2800 Kgs. Lyngby Denmark
| | - Bettina R. Bommarius
- School of Chemical and Biomolecular Engineering, Krone Engineered Biosystems Building Georgia Institute of Technology 950 Atlantic Drive N.W. Atlanta GA 30332 USA
| | - Shelby R. Anderson
- School of Chemical and Biomolecular Engineering, Krone Engineered Biosystems Building Georgia Institute of Technology 950 Atlantic Drive N.W. Atlanta GA 30332 USA
| | - Brent D. Feske
- Department of Chemistry and Biochemistry Georgia Southern University Science Center Suite 1505 11935 Abercorn St., Savannah, GA 31419
| | - John M. Woodley
- Department of Chemical and Biochemical Engineering Technical University of Denmark Building 229, Søltofts Plads DK-2800 Kgs. Lyngby Denmark
| | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering, Krone Engineered Biosystems Building Georgia Institute of Technology 950 Atlantic Drive N.W. Atlanta GA 30332 USA
| |
Collapse
|
6
|
Zhang N, Tian M, Liu X, Yang L. Enzyme assay for d -amino acid oxidase using optically gated capillary electrophoresis-laser induced fluorescence detection. J Chromatogr A 2018; 1548:83-91. [DOI: 10.1016/j.chroma.2018.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
|
7
|
Li M, Qian WJ, Gao Y, Shi L, Liu C. Functional Enzyme-Based Approach for Linking Microbial Community Functions with Biogeochemical Process Kinetics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11848-11857. [PMID: 28891285 DOI: 10.1021/acs.est.7b03158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The kinetics of biogeochemical processes in natural and engineered environmental systems is typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial communities that catalyze biogeochemical reactions. A major challenge of applying such models is the difficulty of quantitatively measuring functional biomass for the constraining and validation of the models. However, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here, we propose an enzyme-based model that can incorporate omics data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes as time-variable catalysts for biogeochemical reactions and applies a biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are required in the model. The application of the model was demonstrated using denitrification, as an example, by comparing model simulations with measured functional enzymes, genes, denitrification substrates, and intermediates.
Collapse
Affiliation(s)
- Minjing Li
- School of Environmental Studies, China University of Geosciences , Wuhan 430074, China
| | - Wei-Jun Qian
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Yuqian Gao
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences , Wuhan 430074, China
| | - Chongxuan Liu
- Pacific Northwest National Laboratory , Richland, Washington 99354, United States
- School of Environmental Science and Engineering, Southern University of Science and Technology , Shenzhen 518055, China
| |
Collapse
|