1
|
Pessoa VA, Soares LBN, Silva GL, Vasconcelos AS, Silva JF, Fariña JI, Oliveira-Junior SD, Sales-Campos C, Chevreuil LR. Production of mycelial biomass, proteases and protease inhibitors by Ganoderma lucidum under different submerged fermentation conditions. BRAZ J BIOL 2023; 83:e270316. [PMID: 37162094 DOI: 10.1590/1519-6984.270316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/01/2023] [Indexed: 05/11/2023] Open
Abstract
Ganoderma lucidum is a medicinal mushroom widely recognized as a source of biomolecules with pharmacological properties, however, little is known about the factors that influence the synthesis of bioactive proteins by this fungus when cultivated under submerged fermentation. The objective of this work was to evaluate the production of mycelial biomass and intracellular proteases and protease inhibitors by G. lucidum cultivated under different submerged fermentation conditions. The cultivation was carried out in a medium composed of glucose (10 or 20 g.L-1), soy peptone (2.5 or 5 g.L-1) and yeast extract (5 g.L-1), with incubation under agitation (120 rpm) and non-agitation, totaling 8 experimental conditions. Biomass production was determined from the dry weight, while glucose consumption was estimated by quantification of reducing sugars. The proteins were extracted in NaCl (0.15 M), and the protein extracts were submitted to protein quantification by the Bradford method, total proteolytic activity using azocasein, caseinolytic and fibrinolytic activity in Petri dishes, activity of serine (trypsin and chymotrypsin) and cysteine (papain) protease inhibitors. Cultivation in agitated condition showed higher biomass production with a maximum value of 7 g.L-1, in addition to higher activities of trypsin, chymotrypsin and papain inhibitors, with 154 IU.mg-1, 153 IU.mg-1 e 343 IU.mg-1 of protein, respectively. The non-agitated condition showed a greater potential for obtaining proteins, total proteases, caseinolytic and fibrinolytic enzymes, with maximum values of 433 mg.g-1 of extract, 71 U.mL-1 of extract, 63.62 mm2 and 50.27 mm2, respectively. Thus, a medium composed of soy peptone, yest extract and glucose in a 1:2:4 proportion is recommended, under agitation to produce protease inhibitors, and the non-agitated condition when the target is, mainly caseinolytic and fibrinolytic enzymes.
Collapse
Affiliation(s)
- V A Pessoa
- Instituto Nacional de Pesquisas da Amazônia - INPA, Edible Fungi Cultivation Laboratory, Manaus, AM, Brasil
- Universidade Federal do Amazonas - UFAM, Postgraduate Program in Biotechnology - PPGBIOTEC, Manaus, AM, Brasil
| | - L B N Soares
- Instituto Nacional de Pesquisas da Amazônia - INPA, Edible Fungi Cultivation Laboratory, Manaus, AM, Brasil
- Universidade do Estado do Amazonas - UEA, Postgraduate Program in Biodiversity and Biotechnology - PPGBIONORTE, Manaus, AM, Brasil
| | - G L Silva
- Instituto Nacional de Pesquisas da Amazônia - INPA, Edible Fungi Cultivation Laboratory, Manaus, AM, Brasil
| | - A S Vasconcelos
- Instituto Nacional de Pesquisas da Amazônia - INPA, Edible Fungi Cultivation Laboratory, Manaus, AM, Brasil
| | - J F Silva
- Instituto Nacional de Pesquisas da Amazônia - INPA, Edible Fungi Cultivation Laboratory, Manaus, AM, Brasil
| | - J I Fariña
- Planta Piloto de Procesos Industriales Microbiológicos - PROIMI-CONICET, San Miguel de Tucumán, Argentina
| | - S D Oliveira-Junior
- Instituto Nacional de Pesquisas da Amazônia - INPA, Edible Fungi Cultivation Laboratory, Manaus, AM, Brasil
| | - C Sales-Campos
- Instituto Nacional de Pesquisas da Amazônia - INPA, Edible Fungi Cultivation Laboratory, Manaus, AM, Brasil
- Universidade Federal do Amazonas - UFAM, Postgraduate Program in Biotechnology - PPGBIOTEC, Manaus, AM, Brasil
- Universidade do Estado do Amazonas - UEA, Postgraduate Program in Biodiversity and Biotechnology - PPGBIONORTE, Manaus, AM, Brasil
| | - L R Chevreuil
- Instituto Nacional de Pesquisas da Amazônia - INPA, Edible Fungi Cultivation Laboratory, Manaus, AM, Brasil
| |
Collapse
|
2
|
Vishvakarma R, Mishra A. Characterization of a Novel Protease Inhibitor from the Edible Mushroom
Agaricus bisporus. Protein Pept Lett 2022; 29:460-472. [DOI: 10.2174/0929866529666220405161903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
Background:
Protease inhibitors inhibit the activity of protease enzymes, hence are essentially involved in the regulation of the metabolic processes involving protease enzymes and protection the host organism against external damage due to proteases. These inhibitors are abundantly present in all living organisms but have not been much reported in mushrooms. Mushrooms are one of the major food components of humans with delicious taste and high nutritional value. Mushrooms also have therapeutic and economic significance. The edible mushrooms with medicinal properties are much in commercial demand. To date, the presence of protease inhibitors has not been reported much in edible mushrooms. The present study reports the characterization of a protease inhibitor isolated from the common white button mushroom Agaricus bisporus.
Objective:
The objective of the present study is to characterize the novel protease inhibitor from Agaricus bisporus to determine its nature and activity at varying environmental conditions.
Method:
The protease inhibitor was characterized through SDS PAGE, gel filtration chromatography, and de novo sequencing to determine its molecular mass, and sequence respectively. The optimum pH and temperature, and the pH and thermal stability were studied to determine the optimum working range of the protease inhibitor. The protease inhibitory activity (%) was determined in presence of metal ions, surfactants, oxidizing agents, and reducing agents. The kinetic parameters and the type of inhibition exhibited by the protease inhibitor were determined using casein and trypsin protease enzyme.
Results:
The protease inhibitor was found to be a low molecular mass compound of 25 kDa. The de novo sequencing matched the inhibitor against a 227 amino acid containing peptide molecular mass of 24.6 kDa molecular mass. The protease inhibitory activity (%) was found highest at pH 7.0 and temperature 50 0C, and was stable from pH 4.0-9.0 and temperature 30-80 0C. In presence of metal ions, the residual protease inhibitory activity (%) enhanced in presence of Na+, Mg2+, and Fe3+. The residual activity increased in presence of the surfactant SDS slightly in comparison to control, while decreased in the case of Triton-X and Tween 20. The presence of oxidizing agents, hydrogen peroxide, and dimethyl sulfoxide decreased the residual inhibitory activity. The protease inhibitor was unaffected by the reducing agents: dithiothreitol and β-mercaptoethanol up to 2mM concentration but decreased at higher concentrations. The inhibitor exhibited uncompetitive inhibition against trypsin with an inhibitory constant of 166 nM, indicating a strong affinity towards the protease, with a half-life of 93.90 minutes at 37 0C.
Conclusion:
Protease inhibitors isolated from mushrooms are generally small in size, more stable, and tolerant towards varying external conditions. The protease inhibitor isolated from Agaricus bisporus also exhibited similar characteristics.
Collapse
Affiliation(s)
- Reena Vishvakarma
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh-226026, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh-221005, India
| |
Collapse
|
3
|
Li M, Yu L, Zhao J, Zhang H, Chen W, Zhai Q, Tian F. Role of dietary edible mushrooms in the modulation of gut microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104538] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
4
|
Piskov S, Timchenko L, Rzhepakovsky I, Avanesyan S, Bondareva N, Sizonenko M, Areshidze D. Effect of pre-treatment conditions on the antiatherogenic potential of freeze-dried oyster mushrooms. FOODS AND RAW MATERIALS 2019. [DOI: 10.21603/2308-4057-2019-2-375-386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oyster mushroom (Pleurotus ostreatus L.) is a valuable food product. It possesses an antiatherogenic potential, which has to be preserved during processing. The paper features the production of oyster mushroom sublimates. It focuses on such pre-treatment conditions as grinding, disinfection, and cryostabilisation, and their effect on the antiatherogenic potential of oyster mushrooms. A set of in vitro experiments was performed to measure the levels of lovastatin and antioxidant, catalase, anti-inflammatory, and thrombolytic properties. Various pre-treatment conditions proved to produce different effects on the biological activity of the freeze-dried oyster mushroom product. The best results were obtained after the mushrooms were reduced to pieces of 0.5 cm, underwent UV disinfection, blanched, treated with hot air, and cryostabilised with a 1.5% apple pectin solution. The best conditions for the antioxidant properties included ozonation, UV disinfection, and cryoprotection with pectin. The critical conditions for the antioxidant properties included homogenisation, blanching, and cryostabilisation with 10% solutions of sucrose and lactose. The catalase properties did not depend on the degree of grinding and were most pronounced after ozonation. The optimal conditions for the anti-inflammatory properties included UV disinfection and cryostabilisation with lactose. Ozonation proved to be critical for anti-inflammatory properties. The optimal conditions for thrombolytic properties included ozonation and cryoprotection with a 5% sorbitol solution, while hot air disinfection proved critical. Therefore, the research provided an experimental substantiation for individual pre-treatment conditions or their combinations that turn sublimated oyster mushrooms into a valuable functional product with antiatherogenic properties.
Collapse
|
5
|
Bhattacharyya A, Babu C. Caesalpinia bonduc serine proteinase inhibitor CbTI–2: Exploring the conformational features and antimalarial activity. Int J Biol Macromol 2017; 103:294-306. [DOI: 10.1016/j.ijbiomac.2017.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 02/03/2023]
|
6
|
Sapna K, Manzur Ali PP, Rekha Mol KR, Bhat SG, Chandrasekaran M, Elyas KK. Isolation, purification and characterization of a pH tolerant and temperature stable proteinaceous protease inhibitor from marine Pseudomonas mendocina. Biotechnol Lett 2017; 39:1911-1916. [PMID: 28861750 DOI: 10.1007/s10529-017-2424-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/22/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVES An extracellular protease inhibitor (BTPI-301) of trypsin was purified and characterized from an isolate of Pseudomonas mendocina. RESULTS BTPI-301was purified to homogeneity by (NH4)2SO4, precipitation, DEAE Sepharose and CNBr-activated Sepharose chromatography. Homogeneity was proved by native PAGE and SDS-PAGE. The intact molecular mass was 11567 Da by MALDI-TOF analysis. BTPI-301was a competitive inhibitor with a Ki of 3.5 × 10-10 M. It was stable and active at pH 4-12 and also at 4-90 °C for 1 h. Peptide mass fingerprinting by MALDI revealed that the BTPI-301 is a new inhibitor not reported so far with protease inhibitory activity. The pI of the inhibitor was 3.8. The stoichiometry of trypsin-BTPI-301 interaction is 1:1. The inhibitor was specific towards trypsin. CONCLUSION A pH tolerant and thermostable protease inhibitor BTPI-301 active against trypsin was purified and characterized from P. mendocina that could be developed and used as biopreservative as well as biocontrol agent.
Collapse
Affiliation(s)
- K Sapna
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682 022, India.
| | - P P Manzur Ali
- Department of Biotechnology, MES College, Marampally, Aluva, Kerala, 683107, India
| | - K R Rekha Mol
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682 022, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682 022, India
| | - M Chandrasekaran
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682 022, India
| | - K K Elyas
- Department of Biotechnology, Calicut University, Malappuram, 673 635, Kerala, India
| |
Collapse
|
7
|
Diling C, Chaoqun Z, Jian Y, Jian L, Jiyan S, Yizhen X, Guoxiao L. Immunomodulatory Activities of a Fungal Protein Extracted from Hericium erinaceus through Regulating the Gut Microbiota. Front Immunol 2017; 8:666. [PMID: 28713364 PMCID: PMC5492111 DOI: 10.3389/fimmu.2017.00666] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
A single-band protein (HEP3) was isolated from Hericium erinaceus using a chemical separation combined with pharmacodynamic evaluation methods. This protein exhibited immunomodulatory activity in lipopolysaccharide-activated RAW 264.7 macrophages by decreasing the overproduction of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, and downregulating the expression of inducible nitric oxide synthase and nuclear factor-κB p65. Further researches revealed that HEP3 could improve the immune system via regulating the composition and metabolism of gut microbiota to activate the proliferation and differentiation of T cells, stimulate the intestinal antigen-presenting cells in high-dose cyclophosphamide-induced immunotoxicity in mice, and play a prebiotic role in the case of excessive antibiotics in inflammatory bowel disease model mice. Aided experiments also showed that HEP3 could be used as an antitumor immune inhibitor in tumor-burdened mice. The results of the present study suggested that fungal protein from H. erinaceus could be used as a drug or functional food ingredient for immunotherapy because of its immunomodulatory activities.
Collapse
Affiliation(s)
- Chen Diling
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Zheng Chaoqun
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,College of Chinese Materia Medica, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yang Jian
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Li Jian
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,College of Chinese Materia Medica, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Su Jiyan
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Xie Yizhen
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Yuewei Edible Fungi Technology Co., Ltd., Guangzhou, China
| | - Lai Guoxiao
- State Key Laboratory of Applied Microbiology South China, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,College of Chinese Materia Medica, Guangxi University of Traditional Chinese Medicine, Nanning, China
| |
Collapse
|
8
|
Vishvakarma R, Mishra A. Production of a protease inhibitor from edible mushroom Agaricus bisporus and its statistical optimization by response surface methodology. Prep Biochem Biotechnol 2017; 47:450-457. [PMID: 28140750 DOI: 10.1080/10826068.2017.1286851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The production of a protease inhibitor from Agaricus bisporus through solid-state fermentation was studied. The purpose was to produce protease inhibitor from natural, cheap, and readily available carbon and nitrogen sources. Solid-state fermentation enhanced the mycelia growth and also gave a higher yield of the product. Further, fungal growth and other production parameters were statistically optimized. The specificity of the inhibitor was tested and was effective against trypsin. Screening of significant factors (wheat bran, cyanobacterial biomass, initial pH, temperature, incubation period, and moisture content and inoculum size) was performed using Plackett-Burman design. Central composite design was used to determine the optimized values of the significant variables which were found to be temperature (27.5°C), incubation time (156 hr), cyanobacterial biomass (1 g), and moisture content (50%) and gave a statistical yield of 980 PIU/g which was 25.6% higher than experimental yield (780 PIU/g). The inhibitor was purified by ammonium sulfate precipitation and diethylaminoethyl (DEAE) cellulose chromatography (yield 43.89% and 0.21%, respectively) and subjected to reversed-phase HPLC to validate its identity. Since protease inhibitors act against proteases, finding ample therapeutic roles; the isolated protease inhibitor from A. bisporus can also be a probable medicinal agent after its further characterization.
Collapse
Affiliation(s)
- Reena Vishvakarma
- a School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) , Varanasi , Uttar Pradesh , India
| | - Abha Mishra
- a School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) , Varanasi , Uttar Pradesh , India
| |
Collapse
|