1
|
Drakontaeidi A, Pontiki E. A Review on Molecular Docking on HDAC Isoforms: Novel Tool for Designing Selective Inhibitors. Pharmaceuticals (Basel) 2023; 16:1639. [PMID: 38139766 PMCID: PMC10746130 DOI: 10.3390/ph16121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023] Open
Abstract
Research into histone deacetylases (HDACs) has experienced a remarkable surge in recent years. These enzymes are key regulators of several fundamental biological processes, often associated with severe and potentially fatal diseases. Inhibition of their activity represents a promising therapeutic approach and a prospective strategy for the development of new therapeutic agents. A critical aspect of their inhibition is to achieve selectivity in terms of enzyme isoforms, which is essential to improve treatment efficacy while reducing undesirable pleiotropic effects. The development of computational chemistry tools, particularly molecular docking, is greatly enhancing the precision of designing molecules with inherent potential for specific activity. Therefore, it was considered necessary to review the molecular docking studies conducted on the major isozymes of the enzyme in order to identify the specific interactions associated with each selective HDAC inhibitor. In particular, the most critical isozymes of HDAC (1, 2, 3, 6, and 8) have been thoroughly investigated within the scope of this review.
Collapse
Affiliation(s)
| | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
2
|
Amin SA, Khatun S, Gayen S, Das S, Jha T. Are inhibitors of histone deacetylase 8 (HDAC8) effective in hematological cancers especially acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL)? Eur J Med Chem 2023; 258:115594. [PMID: 37429084 DOI: 10.1016/j.ejmech.2023.115594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Histone deacetylase 8 (HDAC8) aberrantly deacetylates histone and non-histone proteins. These include structural maintenance of chromosome 3 (SMC3) cohesin protein, retinoic acid induced 1 (RAI1), p53, etc and thus, regulating diverse processes such as leukemic stem cell (LSC) transformation and maintenance. HDAC8, one of the crucial HDACs, affects the gene silencing process in solid and hematological cancer progressions especially on acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). A specific HDAC8 inhibitor PCI-34051 showed promising results against both T-cell lymphoma and AML. Here, we summarize the role of HDAC8 in hematological malignancies, especially in AML and ALL. This article also introduces the structure/function of HDAC8 and a special attention has been paid to address the HDAC8 enzyme selectivity issue in hematological cancer especially against AML and ALL.
Collapse
Affiliation(s)
- Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India; Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal, India.
| | - Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Sanjib Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
3
|
N-(2'-Hydroxyphenyl)-2-Propylpentanamide (HO-AAVPA) Inhibits HDAC1 and Increases the Translocation of HMGB1 Levels in Human Cervical Cancer Cells. Int J Mol Sci 2020; 21:ijms21165873. [PMID: 32824279 PMCID: PMC7461584 DOI: 10.3390/ijms21165873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/13/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
N-(2′-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA) is a VPA derivative designed to be a histone deacetylase (HDAC) inhibitor. HO-AAVPA has better antiproliferative effect than VPA in cancer cell lines. Therefore, in this work, the inhibitory effect of HO-AAVPA on HDAC1, HDAC6, and HDAC8 was determined by in silico and in vitro enzymatic assay. Furthermore, its antiproliferative effect on the cervical cancer cell line (SiHa) and the translocation of HMGB1 and ROS production were evaluated. The results showed that HO-AAVPA inhibits HDAC1, which could be related with HMGB1 translocation from the nucleus to the cytoplasm due to HDAC1 being involved in the deacetylation of HMGB1. Furthermore, an increase in ROS production was observed after the treatment with HO-AAVPA, which also could contribute to HMGB1 translocation. Therefore, the results suggest that one of the possible antiproliferative mechanisms of HO-AAVPA is by HDAC1 inhibition which entails HMGB1 translocation and ROS increased levels that could trigger the cell apoptosis.
Collapse
|
4
|
Sixto-López Y, Gómez-Vidal JA, de Pedro N, Bello M, Rosales-Hernández MC, Correa-Basurto J. Hydroxamic acid derivatives as HDAC1, HDAC6 and HDAC8 inhibitors with antiproliferative activity in cancer cell lines. Sci Rep 2020; 10:10462. [PMID: 32591593 PMCID: PMC7320180 DOI: 10.1038/s41598-020-67112-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/02/2020] [Indexed: 01/04/2023] Open
Abstract
Histone deacetylases (HDACs) belong to a family of enzymes that remove acetyl groups from the ɛ-amino of histone and nonhistone proteins. Additionally, HDACs participate in the genesis and development of cancer diseases as promising therapeutic targets to treat cancer. Therefore, in this work, we designed and evaluated a set of hydroxamic acid derivatives that contain a hydrophobic moiety as antiproliferative HDAC inhibitors. For the chemical structure design, in silico tools (molecular docking, molecular dynamic (MD) simulations, ADME/Tox properties were used to target Zn2+ atoms and HDAC hydrophobic cavities. The most promising compounds were assayed in different cancer cell lines, including hepatocellular carcinoma (HepG2), pancreatic cancer (MIA PaCa-2), breast cancer (MCF-7 and HCC1954), renal cancer (RCC4-VHL and RCC4-VA) and neuroblastoma (SH-SY5Y). Molecular docking and MD simulations coupled to the MMGBSA approach showed that the target compounds have affinity for HDAC1, HDAC6 and HDAC8. Of all the compounds evaluated, YSL-109 showed the best activity against hepatocellular carcinoma (HepG2 cell line, IC50 = 3.39 µM), breast cancer (MCF-7 cell line, IC50 = 3.41 µM; HCC1954 cell line, IC50 = 3.41 µM) and neuroblastoma (SH-SY5Y cell line, IC50 = 6.42 µM). In vitro inhibition assays of compound YSL-109 against the HDACs showed IC50 values of 259.439 µM for HDAC1, 0.537 nM for HDAC6 and 2.24 µM for HDAC8.
Collapse
Affiliation(s)
- Yudibeth Sixto-López
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation)-SEPI, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340, Mexico City, Mexico
| | - José Antonio Gómez-Vidal
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain
| | - Nuria de Pedro
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, 18016, Granada, Spain
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation)-SEPI, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340, Mexico City, Mexico
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation)-SEPI, Escuela Superior de Medicina, Instituto Politécnico Nacional, 11340, Mexico City, Mexico.
| |
Collapse
|
5
|
Corpas-López V, Tabraue-Chávez M, Sixto-López Y, Panadero-Fajardo S, Alves de Lima Franco F, Domínguez-Seglar JF, Morillas-Márquez F, Franco-Montalbán F, Díaz-Gavilán M, Correa-Basurto J, López-Viota J, López-Viota M, Pérez del Palacio J, de la Cruz M, de Pedro N, Martín-Sánchez J, Gómez-Vidal JA. O-Alkyl Hydroxamates Display Potent and Selective Antileishmanial Activity. J Med Chem 2020; 63:5734-5751. [DOI: 10.1021/acs.jmedchem.9b02016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Victoriano Corpas-López
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Mavys Tabraue-Chávez
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Yudibeth Sixto-López
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Sonia Panadero-Fajardo
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Fernando Alves de Lima Franco
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - José F. Domínguez-Seglar
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Francisco Morillas-Márquez
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Francisco Franco-Montalbán
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Mónica Díaz-Gavilán
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos y Productos Biotecnológicos, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340 México City, México
| | - Julián López-Viota
- Departamento de Farmacia y Tecnologı́a Farmacéutica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - Margarita López-Viota
- Departamento de Farmacia y Tecnologı́a Farmacéutica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | | | | | - Nuria de Pedro
- Fundación MEDINA, Parque Tecnológico de la Salud, 18016 Granada, Spain
| | - Joaquina Martín-Sánchez
- Departamento de Parasitologı́a, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| | - José A. Gómez-Vidal
- Departamento de Quı́mica Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, 18071 Granada, Spain
| |
Collapse
|
6
|
Metruccio F, Palazzolo L, Di Renzo F, Battistoni M, Menegola E, Eberini I, Moretto A. Development of an adverse outcome pathway for cranio-facial malformations: A contribution from in silico simulations and in vitro data. Food Chem Toxicol 2020; 140:111303. [PMID: 32251704 DOI: 10.1016/j.fct.2020.111303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
Abstract
Mixtures of substances sharing the same molecular initiating event (MIE) are supposed to induce additive effects. The proposed MIE for azole fungicides is CYP26 inhibition with retinoic acid (RA) local increase, triggering key events leading to craniofacial defects. Valproic acid (VPA) is supposed to imbalance RA-regulated gene expression trough histone deacetylases (HDACs) inhibition. The aim was to evaluate effects of molecules sharing the same MIE (azoles) and of such having (hypothetically) different MIEs but which are eventually involved in the same adverse outcome pathway (AOP). An in silico approach (molecular docking) investigated the suggested MIEs. Teratogenicity was evaluated in vitro (WEC). Abnormalities were modelled by PROAST software. The common target was the branchial apparatus. In silico results confirmed azole-related CYP26 inhibition and a weak general VPA inhibition on the tested HDACs. Unexpectedly, VPA showed also a weak, but not marginal, capability to enter the CYP 26A1 and CYP 26C1 catalytic sites, suggesting a possible role of VPA in decreasing RA catabolism, acting as an additional MIE. Our findings suggest a new more complex picture. Consequently two different AOPs, leading to the same AO, can be described. VPA MIEs (HDAC and CYP26 inhibition) impinge on the two converging AOPs.
Collapse
Affiliation(s)
| | - Luca Palazzolo
- Department of Biomedical and Clinical Sciences "L. Sacco", via GB Grassi 74- 20159, Milan, Italy.
| | - Francesca Di Renzo
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria 26- 20133, Milan, Italy.
| | - Maria Battistoni
- Department of Biomedical and Clinical Sciences "L. Sacco", via GB Grassi 74- 20159, Milan, Italy.
| | - Elena Menegola
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria 26- 20133, Milan, Italy.
| | - Ivano Eberini
- Università degli Studi di Milano, Department of Pharmacological and Biomolecular Sciences & DSRC, via Balzaretti 9- 20133, Milan, Italy.
| | - Angelo Moretto
- Department of Biomedical and Clinical Sciences "L. Sacco", via GB Grassi 74- 20159, Milan, Italy.
| |
Collapse
|
7
|
Martinez-Archundia M, Colin-Astudillo B, Gómez-Hernández L, Abarca-Rojano E, Correa-Basurto J. Docking analysis provide structural insights to design novel ligands that target PKM2 and HDC8 with potential use for cancer therapy. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1579326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- M. Martinez-Archundia
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, México D.F., Mexico
| | - B. Colin-Astudillo
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, México D.F., Mexico
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - L. Gómez-Hernández
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - E. Abarca-Rojano
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - J. Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, México D.F., Mexico
| |
Collapse
|
8
|
Uba AI, Weako J, Keskin Ö, Gürsoy A, Yelekçi K. Examining the stability of binding modes of the co-crystallized inhibitors of human HDAC8 by molecular dynamics simulation. J Biomol Struct Dyn 2019; 38:1751-1760. [PMID: 31057077 DOI: 10.1080/07391102.2019.1615989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Histone deacetylase (HDAC) 8 has been implicated as a potential therapeutic target in a variety of cancers, neurodegenerative disorders, metabolic dysregulation and autoimmune and inflammatory diseases. Several nonselective HDAC inhibitors have been co-crystallized with HDAC8. Molecular dynamics (MD) studies may yield valuable information on the structural stabilities of the complexes over time as determined by various pharmacophore features of the co-crystallized inhibitors. Here, using 11 unmodified X-ray crystal structures of human HDAC8 (complexes) structure-based pharmacophore models were built and clustered based on distance - a function of the number of common pharmacophore features and the root-mean-squared displacement between the matching features. Based on this information, a total of seven complexes (1T64, 1W22, 3RQD, 3SFF, 3F0R, 5VI6 and 5FCW) were submitted to unrestrained 50 ns-MD simulations using nanoscale MD (NAMD) software. 1T64 (HDAC8 in complex with TSA) was found to show the highest stability over time, presumably because of the TSA's ability to span HDAC8 catalytic channel and form a strong ionic interaction with zinc metal ion. Other stable complexes were 1W22, 3SFF, 3F0R and 5FCW. However, 3RQD and 5VI6 showed relative instability over 50 ns time period. This may be attributed to bulkiness of the capping groups of both largazole thiol and trapoxin A, making them unable to fit well into the active site of HDAC8. They rather formed steric clashes with residues on loop regions near the entrance to the channel. Thus, 1T64 and similar crystal structures may be good candidates for HDAC8 structural dynamics studies and inhibitor design.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Science, Kadir Has University, Istanbul, Turkey
| | - Jackson Weako
- Computational Biology and Bioinformatics Department, Faculty of Science and Engineering, Koç University, Sariyer/Istanbul, Turkey
| | - Özlem Keskin
- Computational Biology and Bioinformatics Department, Faculty of Science and Engineering, Koç University, Sariyer/Istanbul, Turkey
| | - Attila Gürsoy
- Computational Biology and Bioinformatics Department, Faculty of Science and Engineering, Koç University, Sariyer/Istanbul, Turkey
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Science, Kadir Has University, Istanbul, Turkey
| |
Collapse
|
9
|
Sixto-López Y, Bello M, Correa-Basurto J. Insights into structural features of HDAC1 and its selectivity inhibition elucidated by Molecular dynamic simulation and Molecular Docking. J Biomol Struct Dyn 2018; 37:584-610. [PMID: 29447615 DOI: 10.1080/07391102.2018.1441072] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Histone deacetylases (HDACs) are a family of proteins whose main function is the removal of acetyl groups from lysine residues located on histone and non-histone substrates, which regulates gene transcription and other activities in cells. HDAC1 dysfunction has been implicated in cancer development and progression; thus, its inhibition has emerged as a new therapeutic strategy. Two additional metal binding sites (Site 1 and Site 2) in HDACs have been described that are primarily occupied by potassium ions, suggesting a possible structural role that affects HDAC activity. In this work, we explored the structural role of potassium ions in Site 1 and Site 2 and how they affect the interactions of compounds with high affinities for HDAC1 (AC1OCG0B, Chlamydocin, Dacinostat and Quisinostat) and SAHA (a pan-inhibitor) using molecular docking and molecular dynamics (MD) simulations in concert with a Molecular-Mechanics-Generalized-Born-Surface-Area (MMGBSA) approach. Four models were generated: one with a potassium ion (K+) in both sites (HDAC1k), a second with K+ only at site 1 (HDAC1ks1), a third with K+ only at site 2 (HDAC1ks2) and a fourth with no K+ (HDAC1wk). We found that the presence or absence of K+ not only impacted the structural flexibility of HDAC1, but also its molecular recognition, consistent with experimental findings. These results could therefore be useful for further structure-based drug design studies addressing new HDAC1 inhibitors.
Collapse
Affiliation(s)
- Yudibeth Sixto-López
- a Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina, Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| | - Martiniano Bello
- a Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina, Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| | - José Correa-Basurto
- a Laboratorio de Modelado Molecular, Bioinformática y Diseño de fármacos, Sección de Estudios de Posgrado e Investigación , Escuela Superior de Medicina, Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| |
Collapse
|
10
|
Martínez-Archundia M, Bello M, Correa-Basurto J. Design of Drugs by Filtering Through ADMET, Physicochemical and Ligand-Target Flexibility Properties. Methods Mol Biol 2018; 1824:403-416. [PMID: 30039421 DOI: 10.1007/978-1-4939-8630-9_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is a synergistic interaction between medicinal chemistry, chemoinformatics, and bioinformatics. The last one includes analyses of sequences as well as structural analysis which employ computational techniques such as docking studies and molecular dynamics (MD) simulations. Over the last years these techniques have allowed the development of new accurate computational tools for drug design. As a result, there have been an increased number of publications where computational methods such as pharmacophore modeling, de novo drug design, evaluation of physicochemical properties, and analysis of ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties have been quite useful for eliminating the compounds with poor physicochemical or toxicological properties. Furthermore, using MD simulations and docking analysis, it is possible to estimate the binding energy of the protein-ligand complexes by using scoring functions, as well as to structurally depict the binding pose of the compounds on proteins, in order to select the best evaluated compounds for subsequent synthetizing and evaluation through biological assays. In this work, we describe some computational tools that have been used for structure-based drug design of new compounds that target histone deacetylases (HDACs), which are known to be potential targets in cancer and parasitic diseases.
Collapse
Affiliation(s)
- Marlet Martínez-Archundia
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos, de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, C.P., Ciudad de México, Mexico
| | - Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos, de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, C.P., Ciudad de México, Mexico.
| | - Jose Correa-Basurto
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos, de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, C.P., Ciudad de México, Mexico.
| |
Collapse
|
11
|
Zagni C, Floresta G, Monciino G, Rescifina A. The Search for Potent, Small-Molecule HDACIs in Cancer Treatment: A Decade After Vorinostat. Med Res Rev 2017; 37:1373-1428. [PMID: 28181261 DOI: 10.1002/med.21437] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) play a crucial role in the remodeling of chromatin, and are involved in the epigenetic regulation of gene expression. In the last decade, inhibition of HDACs came out as a target for specific epigenetic changes associated with cancer and other diseases. Until now, more than 20 HDAC inhibitors (HDACIs) have entered clinical studies, and some of them (e.g., vorinostat, romidepsin) have been approved for the treatment of cutaneous T-cell lymphoma. This review provides an overview of current knowledge, progress, and molecular mechanisms of HDACIs, covering a period from 2011 until 2015.
Collapse
Affiliation(s)
- Chiara Zagni
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Floresta
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.,Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giulia Monciino
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
12
|
Sixto-López Y, Bello M, Rodríguez-Fonseca RA, Rosales-Hernández MC, Martínez-Archundia M, Gómez-Vidal JA, Correa-Basurto J. Searching the conformational complexity and binding properties of HDAC6 through docking and molecular dynamic simulations. J Biomol Struct Dyn 2016; 35:2794-2814. [PMID: 27589363 DOI: 10.1080/07391102.2016.1231084] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Histone deacetylases (HDACs) are a family of proteins involved in the deacetylation of histones and other non-histones substrates. HDAC6 belongs to class II and shares similar biological functions with others of its class. Nevertheless, its three-dimensional structure that involves the catalytic site remains unknown for exploring the ligand recognition properties. Therefore, in this contribution, homology modeling, 100-ns-long Molecular Dynamics (MD) simulation and docking calculations were combined to explore the conformational complexity and binding properties of the catalytic domain 2 from HDAC6 (DD2-HDAC6), for which activity and affinity toward five different ligands have been reported. Clustering analysis allowed identifying the most populated conformers present during the MD simulation, which were used as starting models to perform docking calculations with five DD2-HDAC6 inhibitors: Cay10603 (CAY), Rocilinostat (RCT), Tubastatin A (TBA), Tubacin (TBC), and Nexturastat (NXT), and then were also submitted to 100-ns-long MD simulations. Docking calculations revealed that the five inhibitors bind at the DD2-HDAC6 binding site with the lowest binding free energy, the same binding mode is maintained along the 100-ns-long MD simulations. Overall, our results provide structural information about the molecular flexibility of apo and holo DD2-HDAC6 states as well as insight of the map of interactions between DD2-HDAC6 and five well-known DD2-HDAC6 inhibitors allowing structural details to guide the drug design. Finally, we highlight the importance of combining different theoretical approaches to provide suitable structural models for structure-based drug design.
Collapse
Affiliation(s)
- Yudibeth Sixto-López
- a Laboratorio de Modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| | - Martiniano Bello
- a Laboratorio de Modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Mexico City 11340 , Mexico.,b Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340 , Mexico
| | - Rolando Alberto Rodríguez-Fonseca
- a Laboratorio de Modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| | - Martha Cecilia Rosales-Hernández
- a Laboratorio de Modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Mexico City 11340 , Mexico.,b Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México 11340 , Mexico
| | - Marlet Martínez-Archundia
- a Laboratorio de Modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| | - José Antonio Gómez-Vidal
- c Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica , Universidad de Granada , Granada 18071 , Spain
| | - José Correa-Basurto
- a Laboratorio de Modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Mexico City 11340 , Mexico
| |
Collapse
|
13
|
Prestegui-Martel B, Bermúdez-Lugo JA, Chávez-Blanco A, Dueñas-González A, García-Sánchez JR, Pérez-González OA, Padilla-Martínez II, Fragoso-Vázquez MJ, Mendieta-Wejebe JE, Correa-Basurto AM, Méndez-Luna D, Trujillo-Ferrara J, Correa-Basurto J. N-(2-hydroxyphenyl)-2-propylpentanamide, a valproic acid aryl derivative designed in silico with improved anti-proliferative activity in HeLa, rhabdomyosarcoma and breast cancer cells. J Enzyme Inhib Med Chem 2016; 31:140-149. [PMID: 27483122 DOI: 10.1080/14756366.2016.1210138] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Epigenetic alterations are associated with cancer and their targeting is a promising approach for treatment of this disease. Among current epigenetic drugs, histone deacetylase (HDAC) inhibitors induce changes in gene expression that can lead to cell death in tumors. Valproic acid (VPA) is a HDAC inhibitor that has antitumor activity at mM range. However, it is known that VPA is a hepatotoxic drug. Therefore, the aim of this study was to design a set of VPA derivatives adding the arylamine core of the suberoylanilide hydroxamic acid (SAHA) with different substituents at its carboxyl group. These derivatives were submitted to docking simulations to select the most promising compound. The compound 2 (N-(2-hydroxyphenyl)-2-propylpentanamide) was the best candidate to be synthesized and evaluated in vitro as an anti-cancer agent against HeLa, rhabdomyosarcoma and breast cancer cell lines. Compound 2 showed a better IC50 (μM range) than VPA (mM range) on these cancer cells. And also, 2 was particularly effective on triple negative breast cancer cells. In conclusion, 2 is an example of drugs designed in silico that show biological properties against human cancer difficult to treat as triple negative breast cancer.
Collapse
Affiliation(s)
- Berenice Prestegui-Martel
- a Laboratorio de Modelado Molecular y Bioinformática , Laboratorio de Bioquímica, Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, Ciudad de México , México
| | - Jorge Antonio Bermúdez-Lugo
- a Laboratorio de Modelado Molecular y Bioinformática , Laboratorio de Bioquímica, Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, Ciudad de México , México
| | - Alma Chávez-Blanco
- b División de Investigación Básica, Instituto Nacional de Cancerología , Tlalpan, Sección XVI, Ciudad de México , México
| | - Alfonso Dueñas-González
- c Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Cancerología , Ciudad de México , México
| | - José Rubén García-Sánchez
- d Laboratorio de Oncología Molecular y Estrés Oxidativo , Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, Ciudad de México , México
| | - Oscar Alberto Pérez-González
- e Laboratorio de Oncología Experimental , Instituto Nacional de Pediatría , Coyoacán, Insurgentes Cuicuilco, Ciudad de México , México , and
| | - Itzia Irene Padilla-Martínez
- f Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional , Barrio La Laguna Ticomán, Ciudad de México , México
| | - Manuel Jonathan Fragoso-Vázquez
- a Laboratorio de Modelado Molecular y Bioinformática , Laboratorio de Bioquímica, Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, Ciudad de México , México
| | - Jessica Elena Mendieta-Wejebe
- a Laboratorio de Modelado Molecular y Bioinformática , Laboratorio de Bioquímica, Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, Ciudad de México , México
| | - Ana María Correa-Basurto
- a Laboratorio de Modelado Molecular y Bioinformática , Laboratorio de Bioquímica, Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, Ciudad de México , México
| | - David Méndez-Luna
- a Laboratorio de Modelado Molecular y Bioinformática , Laboratorio de Bioquímica, Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, Ciudad de México , México
| | - José Trujillo-Ferrara
- a Laboratorio de Modelado Molecular y Bioinformática , Laboratorio de Bioquímica, Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, Ciudad de México , México
| | - José Correa-Basurto
- a Laboratorio de Modelado Molecular y Bioinformática , Laboratorio de Bioquímica, Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, Ciudad de México , México
| |
Collapse
|
14
|
Structure of 'linkerless' hydroxamic acid inhibitor-HDAC8 complex confirms the formation of an isoform-specific subpocket. J Struct Biol 2016; 195:373-378. [PMID: 27374062 DOI: 10.1016/j.jsb.2016.06.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/16/2016] [Accepted: 06/28/2016] [Indexed: 01/10/2023]
Abstract
Histone deacetylases (HDACs) catalyze the hydrolysis of acetylated lysine side chains in histone and non-histone proteins, and play a critical role in the regulation of many biological processes, including cell differentiation, proliferation, senescence, and apoptosis. Aberrant HDAC activity is associated with cancer, making these enzymes important targets for drug design. In general, HDAC inhibitors (HDACi) block the proliferation of tumor cells by inducing cell differentiation, cell cycle arrest, and/or apoptosis, and comprise some of the leading therapies in cancer treatments. To date, four HDACi have been FDA approved for the treatment of cancers: suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza®), romidepsin (FK228, Istodax®), belinostat (Beleodaq®), and panobinostat (Farydak®). Most current inhibitors are pan-HDACi, and non-selectively target a number of HDAC isoforms. Six previously reported HDACi were rationally designed, however, to target a unique sub-pocket found only in HDAC8. While these inhibitors were indeed potent against HDAC8, and even demonstrated specificity for HDAC8 over HDACs 1 and 6, there were no structural data to confirm the mode of binding. Here we report the X-ray crystal structure of Compound 6 complexed with HDAC8 to 1.98Å resolution. We also describe the use of molecular docking studies to explore the binding interactions of the other 5 related HDACi. Our studies confirm that the HDACi induce the formation of and bind in the HDAC8-specific subpocket, offering insights into isoform-specific inhibition.
Collapse
|
15
|
Kaushal R, Sheetal. In vitro anticancer and antibacterial activities of octahedral ruthenium(III) complexes with hydroxamic acids. Synthesis and spectroscopic characterization. RUSS J GEN CHEM+ 2016. [DOI: 10.1134/s1070363216020274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Zhou A, Hu J, Wang L, Zhong G, Pan J, Wu Z, Hui A. Combined 3D-QSAR, molecular docking, and molecular dynamics study of tacrine derivatives as potential acetylcholinesterase (AChE) inhibitors of Alzheimer's disease. J Mol Model 2015; 21:277. [PMID: 26438408 DOI: 10.1007/s00894-015-2797-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 08/24/2015] [Indexed: 11/25/2022]
Abstract
Acetylcholinesterase (AChE) is one of the key targets of drugs for treating Alzheimer's disease (AD). Tacrine is an approved drug with AChE-inhibitory activity. In this paper, 3D-QSAR, molecular docking, and molecular dynamics were carried out in order to study 60 tacrine derivatives and their AChE-inhibitory activities. 3D-QSAR modeling resulted in an optimal CoMFA model with q(2) = 0.552 and r(2) = 0.983 and an optimal CoMSIA model with q(2) = 0.581 and r(2) = 0.989. These QSAR models also showed that the steric and H-bond fields of these compounds are important influences on their activities. The interactions between these inhibitors and AChE were further explored through molecular docking and molecular dynamics simulation. A few key residues (Tyr70, Trp84, Tyr121, Trp279, and Phe330) at the binding site of AChE were identified. The results of this study improve our understanding of the mechanisms of AChE inhibitors and afford valuable information that should aid the design of novel potential AChE inhibitors. Graphical Abstract Superposition of backbone atoms of the lowest-energy structure obtained from MD simulation (magenta) onto those of the structure of the initial molecular docking model (green).
Collapse
Affiliation(s)
- An Zhou
- Institute of Natural Medicine, Hefei University of Technology, No. 193, Tunxi Road, Hefei, 230009, Anhui, China.,Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, 103 Meishan Road, Hefei, 230038, Anhui, China
| | - Jianping Hu
- Department of Pharmaceutical Sciences, School of Pharmacy, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Key Laboratory of Medicinal and Edible Plants Resources Development, School of Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Lirong Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Key Laboratory of Medicinal and Edible Plants Resources Development, School of Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Guochen Zhong
- Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, 103 Meishan Road, Hefei, 230038, Anhui, China
| | - Jian Pan
- Institute of Natural Medicine, Hefei University of Technology, No. 193, Tunxi Road, Hefei, 230009, Anhui, China.
| | - Zeyu Wu
- Institute of Natural Medicine, Hefei University of Technology, No. 193, Tunxi Road, Hefei, 230009, Anhui, China
| | - Ailing Hui
- Institute of Natural Medicine, Hefei University of Technology, No. 193, Tunxi Road, Hefei, 230009, Anhui, China.
| |
Collapse
|
17
|
Correa-Basurto J, Cuevas-Hernández RI, Phillips-Farfán BV, Martínez-Archundia M, Romo-Mancillas A, Ramírez-Salinas GL, Pérez-González ÓA, Trujillo-Ferrara J, Mendoza-Torreblanca JG. Identification of the antiepileptic racetam binding site in the synaptic vesicle protein 2A by molecular dynamics and docking simulations. Front Cell Neurosci 2015; 9:125. [PMID: 25914622 PMCID: PMC4392693 DOI: 10.3389/fncel.2015.00125] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/17/2015] [Indexed: 01/21/2023] Open
Abstract
Synaptic vesicle protein 2A (SV2A) is an integral membrane protein necessary for the proper function of the central nervous system and is associated to the physiopathology of epilepsy. SV2A is the molecular target of the anti-epileptic drug levetiracetam and its racetam analogs. The racetam binding site in SV2A and the non-covalent interactions between racetams and SV2A are currently unknown; therefore, an in silico study was performed to explore these issues. Since SV2A has not been structurally characterized with X-ray crystallography or nuclear magnetic resonance, a three-dimensional (3D) model was built. The model was refined by performing a molecular dynamics simulation (MDS) and the interactions of SV2A with the racetams were determined by docking studies. A reliable 3D model of SV2A was obtained; it reached structural equilibrium during the last 15 ns of the MDS (50 ns) with remaining structural motions in the N-terminus and long cytoplasmic loop. The docking studies revealed that hydrophobic interactions and hydrogen bonds participate importantly in ligand recognition within the binding site. Residues T456, S665, W666, D670 and L689 were important for racetam binding within the trans-membrane hydrophilic core of SV2A. Identifying the racetam binding site within SV2A should facilitate the synthesis of suitable radio-ligands to study treatment response and possibly epilepsy progression.
Collapse
Affiliation(s)
- José Correa-Basurto
- Laboratorio de Modelado Molecular y Diseño de fármacos, Departamento de Bioquímica de la Escuela Superior de Medicina del Instituto Politécnico Nacional, México City Mexico
| | - Roberto I Cuevas-Hernández
- Laboratorio de Modelado Molecular y Diseño de fármacos, Departamento de Bioquímica de la Escuela Superior de Medicina del Instituto Politécnico Nacional, México City Mexico
| | - Bryan V Phillips-Farfán
- Laboratorio de Nutrición Experimental, Laboratorio de Oncología Experimental and Laboratorio de Neuroquímica, Instituto Nacional de Pediatría, México City Mexico
| | - Marlet Martínez-Archundia
- Laboratorio de Modelado Molecular y Diseño de fármacos, Departamento de Bioquímica de la Escuela Superior de Medicina del Instituto Politécnico Nacional, México City Mexico
| | - Antonio Romo-Mancillas
- División de Estudios de Posgrado, Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro Mexico
| | - Gema L Ramírez-Salinas
- Laboratorio de Modelado Molecular y Diseño de fármacos, Departamento de Bioquímica de la Escuela Superior de Medicina del Instituto Politécnico Nacional, México City Mexico
| | - Óscar A Pérez-González
- Laboratorio de Nutrición Experimental, Laboratorio de Oncología Experimental and Laboratorio de Neuroquímica, Instituto Nacional de Pediatría, México City Mexico
| | - José Trujillo-Ferrara
- Laboratorio de Modelado Molecular y Diseño de fármacos, Departamento de Bioquímica de la Escuela Superior de Medicina del Instituto Politécnico Nacional, México City Mexico
| | - Julieta G Mendoza-Torreblanca
- Laboratorio de Nutrición Experimental, Laboratorio de Oncología Experimental and Laboratorio de Neuroquímica, Instituto Nacional de Pediatría, México City Mexico
| |
Collapse
|
18
|
Histone deacetylases: structural determinants of inhibitor selectivity. Drug Discov Today 2015; 20:718-35. [PMID: 25687212 DOI: 10.1016/j.drudis.2015.01.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/17/2014] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
Abstract
Histone deacetylases (HDACs) are epigenetic targets with an important role in cancer, neurodegeneration, inflammation, and metabolic disorders. Although clinically effective HDAC inhibitors have been developed, the design of inhibitors with the desired isoform(s) selectivity remains a challenge. Selective inhibitors could help clarify the function of each isoform, and provide therapeutic agents having potentially fewer adverse effects. Crystal structures of several HDACs have been reported, enabling structure-based drug design and providing important information to understand enzyme function. Here, we provide a comprehensive review of the structural information available on HDACs, discussing both conserved and isoform-specific structural and mechanistic features. We focus on distinctive aspects that help rationalize inhibitor selectivity, and provide structure-based recommendations for achieving the desired selectivity.
Collapse
|