1
|
Yang X, Wei S, Hou K, Wei Y, Lin M, Hu X, Chen F, Zhu Y. Citral: A potent inhibitor of advanced glycation end products. Food Chem 2025; 463:141247. [PMID: 39305645 DOI: 10.1016/j.foodchem.2024.141247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 11/14/2024]
Abstract
Advanced glycation end products (AGEs), which are produced during food processing, pose health risks to humans. This study found that citral (Cit) effectively inhibited the formation of both fluorescent and non-fluorescent AGEs in the bovine serum albumin (BSA)-glucose (Glc) system. Cit achieved an average inhibition rate of over 80 % for fluorescent AGEs and reduced the levels of N-ε-carboxymethyllysine (CML) and N-ε-carboxyethyllysine (CEL) by up to 45.85 % and 59.32 %, respectively. The comprehensive characterizations and high-resolution mass spectrometry analysis demonstrated that the carbonyl group and CC group present on Cit could compete with Glc for the amino groups on BSA, thereby reducing the formation of AGEs. Additionally, the cytotoxicity assay demonstrated that the BSA-Cit adducts were non-toxic. This research indicated that Cit was a potent and safe inhibitor of AGEs.
Collapse
Affiliation(s)
- Xin Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Siyu Wei
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Kangdi Hou
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yumeng Wei
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Mengyi Lin
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yuchen Zhu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Zhang Y, Chen Y, Liu H, Sun B. Advances of nanoparticle derived from food in the control of α-dicarbonyl compounds-A review. Food Chem 2024; 444:138660. [PMID: 38330613 DOI: 10.1016/j.foodchem.2024.138660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
α-Dicarbonyl compounds (α-DCs) are predominantly generated through the thermal processing of carbohydrate and protein-rich food. They are pivotal precursors to hazard formation, such as advanced glycation end products (AGEs), acrylamide, and furan. Their accumulation within the body will be genotoxicity and neurotoxicity. Recently, significant advancements have been made in nanotechnology, leading to the widespread utilization of nanomaterials as functional components in addressing the detrimental impact of α-DCs. This review focuses on the control of α-DCs through the utilization of nanoparticle-based functional factors, which were prepared by using edible components as resources. Four emerging nanoparticles are introduced including phenolic compounds-derived nanoparticle, plant-derived nanoparticle, active peptides-derived nanoparticle, and functional minerals-derived nanoparticle. The general control mechanisms as well as the recent evidence pertaining to the aforementioned aspects were also discussed, hoping to valuable helpful references for the development of innovative α-DCs scavengers and identifying the further scope of research.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Yunhai Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
3
|
Sivaram A, Patil N. Nanoparticles in prevention of protein glycation. VITAMINS AND HORMONES 2024; 125:287-309. [PMID: 38997167 DOI: 10.1016/bs.vh.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are formed by the non-enzymatic attachment of carbohydrates to a biological macromolecule. These AGEs bind to their cognate receptor called receptor for AGEs (RAGEs), which becomes one of the important causal factors for the initiation and progression of several diseases. A deep understanding into the pathways of RAGEs will help in identifying novel intervention modalities as a part of new therapeutic strategies. Although several approaches exist to target this pathway using small molecules, compounds of plant origin etc, nanoparticles have proven to be a critical method, given its several advantages. A high bioavailability, biocompatibility, ability to cross blood brain barrier and modifiable surface properties give nanoparticles an upper edge over other strategies. In this chapter, we will discuss AGEs, their involvement in diseases and the nanoparticles used for targeting this pathway.
Collapse
Affiliation(s)
- Aruna Sivaram
- School of Bioengineering Sciences and Research, MIT ADT University, Pune, India
| | - Nayana Patil
- School of Bioengineering Sciences and Research, MIT ADT University, Pune, India.
| |
Collapse
|
4
|
Boteva E, Doychev K, Kirilov K, Handzhiyski Y, Tsekovska R, Gatev E, Mironova R. Deglycation activity of the Escherichia coli glycolytic enzyme phosphoglucose isomerase. Int J Biol Macromol 2024; 257:128541. [PMID: 38056730 DOI: 10.1016/j.ijbiomac.2023.128541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Glycation is a spontaneous chemical reaction, which affects the structure and function of proteins under normal physiological conditions. Therefore, organisms have evolved diverse mechanisms to combat glycation. In this study, we show that the Escherichia coli glycolytic enzyme phosphoglucose isomerase (Pgi) exhibits deglycation activity. We found that E. coli Pgi catalyzes the breakdown of glucose 6-phosphate (G6P)-derived Amadori products (APs) in chicken lysozyme. The affinity of Pgi to the glycated lysozyme (Km, 1.1 mM) was ten times lower than the affinity to its native substrate, fructose 6-phosphate (Km, 0.1 mM). However, the high kinetic constants of the enzyme with the glycated lysozyme (kcat, 396 s-1 and kcat/Km, 3.6 × 105 M-1 s-1) indicated that the Pgi amadoriase activity may have physiological implications. Indeed, when using total E. coli protein (20 mg/mL) as a substrate in the deglycation reaction, we observed a release of G6P from the bacterial protein at a Pgi specific activity of 33 μmol/min/mg. Further, we detected 11.4 % lower APs concentration in protein extracts from Pgi-proficient vs. deficient cells (p = 0.0006) under conditions where the G6P concentration in Pgi-proficient cells was four times higher than in Pgi-deficient cells (p = 0.0001). Altogether, these data point to physiological relevance of the Pgi deglycation activity.
Collapse
Affiliation(s)
- Elitsa Boteva
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Konstantin Doychev
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kiril Kirilov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Yordan Handzhiyski
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Rositsa Tsekovska
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Evan Gatev
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Roumyana Mironova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria.
| |
Collapse
|
5
|
Alenazi F, Saleem M, Syed Khaja AS, Zafar M, Alharbi MS, Al Hagbani T, Khan MY, Ahmad W, Ahmad S. Antiglycation potential of plant based TiO 2 nanoparticle in D-ribose glycated BSA in vitro. Cell Biochem Funct 2022; 40:784-796. [PMID: 36128730 DOI: 10.1002/cbf.3744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/27/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Abstract
Biosynthetic procedure is one of the best alternatives, inexpensive and ecologically sound for the synthesis of titanium dioxide (TiO2 ) nanoparticles using a methanolic extract of medicinal plant. The main prospect of this study was to investigate the antiglycation activity of the TiO2 nanoparticles (TNP) prepared by ethanolic leaf extract of the Coleus scutellarioides. In this study, biosynthesized TNP characterized with UV-Visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscope. These TNP were further investigated with respect to their antiglycation property and it was checked in the mixture of d-ribose glycated bovine serum albumin (BSA) by measuring ketoamine, carbonyl content, Advanced glycation end products (AGEs) and aggregation of protein instigated by glycation process. The inhibitory effect of TNP to restore the structure of BSA in presence of d-ribose were also characterize by biophysical techniques mentioned above. Therefore, the findings of this study suggest repurposing of TNP for its antiglycation property that could be helpful in prevention of glycation instigated AGEs formation and structural loss of proteins.
Collapse
Affiliation(s)
- Fahaad Alenazi
- Department of Pharmacology, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Mohd Saleem
- Department of Pathology, College of Medicine, University of Hail, Hail, Saudi Arabia
| | | | - Mubashir Zafar
- Department of Community Medicine, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Mohammed Salem Alharbi
- Department of Internal Medicine, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Mohd Yasir Khan
- Department of Biotechnology, School of Applied & Life Science (SALS), Uttaranchal University, Dehradun, Uttarakhand, India
| | - Waseem Ahmad
- Department of Chemistry, School of Applied & Life Science (SALS), Uttaranchal University, Dehradun, Uttarakhand, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
6
|
Inhibition of highland barley bran-derived carbon dots on the formation of advanced glycation end products. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Zhang N, Zhou Q, Fan D, Xiao J, Zhao Y, Cheng KW, Wang M. Novel roles of hydrocolloids in foods: Inhibition of toxic maillard reaction products formation and attenuation of their harmful effects. Trends Food Sci Technol 2021; 111:706-715. [DOI: 10.1016/j.tifs.2021.03.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Synthesis, characterization and applications of nano-Ag-tagged poly(ε-caprolactone-block-tetrahydrofuran). Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02861-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Momeni S, Sedaghati F. CuO/Cu2O nanoparticles: A simple and green synthesis, characterization and their electrocatalytic performance toward formaldehyde oxidation. Microchem J 2018. [DOI: 10.1016/j.microc.2018.07.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Jalal M, Ansari MA, Alzohairy MA, Ali SG, Khan HM, Almatroudi A, Raees K. Biosynthesis of Silver Nanoparticles from Oropharyngeal Candida glabrata Isolates and Their Antimicrobial Activity against Clinical Strains of Bacteria and Fungi. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E586. [PMID: 30071582 PMCID: PMC6116273 DOI: 10.3390/nano8080586] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 11/27/2022]
Abstract
The objective of the present study was one step extracellular biosynthesis of silver nanoparticles (AgNPs) using supernatant of Candida glabrata isolated from oropharyngeal mucosa of human immunodeficiency virus (HIV) patients and evaluation of their antibacterial and antifungal potential against human pathogenic bacteria and fungi. The mycosynthesized AgNPs were characterized by color visualization, ultraviolet-visible (UV) spectroscopy, fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The FTIR spectra revealed the binding and stabilization of nanoparticles with protein. The TEM analysis showed that nanoparticles were well dispersed and predominantly spherical in shape within the size range of 2⁻15 nm. The antibacterial and antifungal potential of AgNPs were characterized by determining minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC)/ minimum fungicidal concentration (MFC), and well diffusion methods. The MBC and MFC were found in the range of 62.5⁻250 μg/mL and 125⁻500 μg/mL, which revealed that bacterial strains were more susceptible to AgNPs than fungal strains. These differences in bactericidal and fungicidal concentrations of the AgNPs were due to the differences in the cell structure and organization of bacteria and yeast cells. The interaction of AgNPs with C. albicans analyzed by TEM showed the penetration of nanoparticles inside the Candida cells, which led the formation of "pits" and "pores" that result from the rupturing of the cell wall and membrane. Further, TEM analysis showed that Candida cells treated with AgNPs were highly deformed and the cells had shrunken to a greater extent because of their interaction with the fungal cell wall and membrane, which disrupted the structure of the cell membrane and inhibited the normal budding process due to the destruction and loss of membrane integrity and formation of pores that may led to the cell death.
Collapse
Affiliation(s)
- Mohammad Jalal
- Department of Microbiology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia.
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of applied Medical sciences, Qassim University, Qassim 51431, Saudi Arabia.
| | - Syed Ghazanfar Ali
- Department of Microbiology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, India.
| | - Haris M Khan
- Department of Microbiology, Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh 202002, India.
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of applied Medical sciences, Qassim University, Qassim 51431, Saudi Arabia.
| | - Kashif Raees
- Department of Applied Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
11
|
Ashraf JM, Ansari MA, Fatma S, Abdullah SMS, Iqbal J, Madkhali A, Hamali AH, Ahmad S, Jerah A, Echeverria V, Barreto GE, Ashraf GM. Inhibiting Effect of Zinc Oxide Nanoparticles on Advanced Glycation Products and Oxidative Modifications: a Potential Tool to Counteract Oxidative Stress in Neurodegenerative Diseases. Mol Neurobiol 2018; 55:7438-7452. [DOI: 10.1007/s12035-018-0935-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 12/12/2022]
|
12
|
Ashe S, Nayak D, Kumari M, Nayak B. Ameliorating Effects of Green Synthesized Silver Nanoparticles on Glycated End Product Induced Reactive Oxygen Species Production and Cellular Toxicity in Osteogenic Saos-2 Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30005-30016. [PMID: 27749032 DOI: 10.1021/acsami.6b10639] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Advanced glycation end-products (AGEs) that result from nonenzymatic glycation are one of the major factors involved in diabetes and its secondary complications and diseases. This necessitates our urge to discover new compounds that may be used as potential AGEs inhibitors without affecting the normal structure and function of biomolecules. In the present study, we investigated the inhibitory effects of AgNP (silver nanoparticles) on AGEs formation as well as their inhibitory effects on glycation mediated cell toxicity via reactive oxygen species (ROS) production and DNA damage. The excitation-emission fluorescence spectroscopy was employed to investigate the interaction of AgNP during glycation. The values of conditional stability constant (log Ka = 4.44) derived from the Stern-Volmer equation indicate that AgNP have strong binding capacity for glycated protein. UV-vis, fluorescence, and Fourier transform infrared spectral data reveal complexation of AgNP with glycated bovine serum albumin, which significantly inhibits AGEs formation in a concentration-dependent manner. Cytotoxic evaluations suggest that simultaneous administration of AgNP and glycated product reduces cell death (42.82% ± 3.54) as compared to the glycated product alone. Similarly, ROS production in AgNP treated cells is significantly less compared to only glycated product treated cells. Although DNA damage studies show DNA damage in both GP and GP-AgNP treated cells, fluorescence activated cell sorting analysis demonstrates that glycated products induce cell death by necrosis, while AgNP cause cell death via apoptotic pathways. AgNP have a positive effect on restoring native protein structure deduced from spectral studies, and hence, inferences can be drawn that AgNP have ameliorating effects on glycated induced cytotoxicity observed in osteogenic Saos-2 cells.
Collapse
Affiliation(s)
- Sarbani Ashe
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Debasis Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Manisha Kumari
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
13
|
Yu X, Hong F, Zhang YQ. Bio-effect of nanoparticles in the cardiovascular system. J Biomed Mater Res A 2016; 104:2881-97. [PMID: 27301683 DOI: 10.1002/jbm.a.35804] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/07/2016] [Indexed: 12/21/2022]
Abstract
Nanoparticles (NPs; < 100 nm) are increasingly being applied in various fields due to their unique physicochemical properties. The increase in human exposure to NPs has raised concerns regarding their health and safety profiles. The potential correlation between NP exposure and several cardiovascular (CV) events has been demonstrated. The aim of this review is to provide a comprehensive evaluation of the current knowledge regarding the bio-toxic impacts of titanium oxide, silver, silica, carbon black, carbon nanotube, and zinc oxide NPs exposure on the CV system in terms of in vivo and in vitro experiments, which is not fully understood presently. Moreover, the potential toxic mechanisms of NPs in the CV system that are still being questioned are elaborately discussed, and the underlying capacity of NPs used in medicine for CV events are summarized. It will be an important instrument to extrapolate relevant data for human CV risk evaluation and management. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2881-2897, 2016.
Collapse
Affiliation(s)
- Xiaohong Yu
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou, 215123, People's Republic of China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China. .,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China.
| | - Yu-Qing Zhang
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou, 215123, People's Republic of China
| |
Collapse
|
14
|
Ashraf JM, Ansari MA, Khan HM, Alzohairy MA, Choi I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci Rep 2016; 6:20414. [PMID: 26829907 PMCID: PMC4735866 DOI: 10.1038/srep20414] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/04/2016] [Indexed: 11/24/2022] Open
Abstract
Advanced glycation end-products (AGEs) resulting from non-enzymatic glycation are one of the major factors implicated in secondary complications of diabetes. Scientists are focusing on discovering new compounds that may be used as potential AGEs inhibitors without affecting the normal structure and function of biomolecules. A number of natural and synthetic compounds have been proposed as AGE inhibitors. In this study, we investigated the inhibitory effects of AgNPs (silver nanoparticles) in AGEs formation. AgNPs (~30.5 nm) synthesized from Aloe Vera leaf extract were characterized using UV-Vis spectroscopy, energy-dispersive X-ray spectroscopy (EDX), high resolution-transmission electron microscopy, X-ray diffraction and dynamic light scattering (DLS) techniques. The inhibitory effects of AgNPs on AGEs formation were evaluated by investigating the degree of reactivity of free amino groups (lysine and arginine residues), protein-bound carbonyl and carboxymethyl lysine (CML) content, and the effects on protein structure using various physicochemical techniques. The results showed that AgNPs significantly inhibit AGEs formation in a concentration dependent manner and that AgNPs have a positive effect on protein structure. These findings strongly suggest that AgNPs may play a therapeutic role in diabetes-related complications.
Collapse
Affiliation(s)
| | - Mohammad Azam Ansari
- Nanotechnology and Antimicrobial Drug Resistance Research Laboratory, Department of Microbiology, Jawaharlal Nehru Medical College & Hospital, Aligarh Muslim University, Aligarh-202002, U.P., India
- Department of Medical Laboratories, College of Applied Medical Science, Buraydah Colleges, Buraydah 51452, Saudi Arabia
| | - Haris M. Khan
- Nanotechnology and Antimicrobial Drug Resistance Research Laboratory, Department of Microbiology, Jawaharlal Nehru Medical College & Hospital, Aligarh Muslim University, Aligarh-202002, U.P., India
| | - Mohammad A. Alzohairy
- Department of Medical Laboratories, College of Applied Medical Science, Buraydah Colleges, Buraydah 51452, Saudi Arabia
- Department of Medical Laboratories, College of Medical Science, Qassim University, Saudi Arabia
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
15
|
Glycation of H1 Histone by 3-Deoxyglucosone: Effects on Protein Structure and Generation of Different Advanced Glycation End Products. PLoS One 2015; 10:e0130630. [PMID: 26121680 PMCID: PMC4487796 DOI: 10.1371/journal.pone.0130630] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
Advanced glycation end products (AGEs) culminate from the non-enzymatic reaction between a free carbonyl group of a reducing sugar and free amino group of proteins. 3-deoxyglucosone (3-DG) is one of the dicarbonyl species that rapidly forms several protein-AGE complexes that are believed to be involved in the pathogenesis of several diseases, particularly diabetic complications. In this study, the generation of AGEs (Nε-carboxymethyl lysine and pentosidine) by 3-DG in H1 histone protein was characterized by evaluating extent of side chain modification (lysine and arginine) and formation of Amadori products as well as carbonyl contents using several physicochemical techniques. Results strongly suggested that 3-DG is a potent glycating agent that forms various intermediates and AGEs during glycation reactions and affects the secondary structure of the H1 protein. Structural changes and AGE formation may influence the function of H1 histone and compromise chromatin structures in cases of secondary diabetic complications.
Collapse
|