1
|
Muratova AY, Panchenko LV, Dubrovskaya EV, Lyubun’ EV, Golubev SN, Sungurtseva IY, Zakharevich AM, Biktasheva LR, Galitskaya PY, Turkovskaya OV. Bioremediation Potential of Biochar-Immobilized Cells of Azospirillum brasilense. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722601336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
2
|
Du X, Ran Q, Wang J, Jiang H, Wang J, Li YZ. Microvirga roseola sp. nov. and Microvirga lenta sp. nov., isolated from Taklamakan Desert soil. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-negative, rod-shaped, non-spore-forming bacteria, designated SM9T and SM2T, were isolated from Taklamakan Desert soil samples. Phylogenetic analysis based on the 16S rRNA gene sequences showed that strains SM9T and SM2T had the highest sequence similarity to the type strains
Microvirga indica
BCRC 80972T and
Microvirga soli
NBRC 112417T with similarity values of 98.2 and 97.7 %, respectively, and
Microvirga
was among the predominant genera in the desert soil. The draft genomes of these two strains were 4.56 Mbp (SM9T) and 5.08 Mbp (SM2T) long with 65.1 mol% (SM9T) and 63.5 mol% (SM2T) G+C content. To adapt to the desert environment, these two strains possessed pathways for the synthesis of stress metabolite trehalose. The major fatty acids (>5 %) included C18 : 1 ω9c in SM2T, but C16 : 0, C18 : 0 and C19 : 0 cyclo ω8c in SM9T, while the major menaquinone was ubiquinone 10 in both strains. The major polar lipids of SM9T and SM2T were phosphatidylglycerol, phosphatidylethanolamine and phospholipid. The average nucleotide identity and digital DNA–DNA hybridization results further indicated that strains SM9T and SM2T were distinguished from phylogenetically related species and represented two novel species within the genus
Microvirga
, for which the names Microvirga roseola sp. nov. (type strain SM2T=KCTC 72792T=CGMCC 1.17776T) and Microvirga lenta sp. nov. (type strain SM9T=KCTC 82729T=CCTCC AB 2021131T) are proposed.
Collapse
Affiliation(s)
- Xinran Du
- State Key Laboratory of Microbial Technology, Institute of Microbiology Technology, Shandong University, Qingdao 266237, PR China
| | - Qi Ran
- State Key Laboratory of Microbial Technology, Institute of Microbiology Technology, Shandong University, Qingdao 266237, PR China
| | - Jianing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbiology Technology, Shandong University, Qingdao 266237, PR China
| | - Hong Jiang
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, PR China
| | - Jingjing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbiology Technology, Shandong University, Qingdao 266237, PR China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbiology Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
3
|
Liu Y, Wu J, Liu Y, Wu X. Biological Process of Alkane Degradation by Gordonia sihwaniensis. ACS OMEGA 2022; 7:55-63. [PMID: 35036678 PMCID: PMC8756779 DOI: 10.1021/acsomega.1c01708] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 05/19/2023]
Abstract
With the development of the petroleum industry, oil pollution has become widespread. It is harmful to the digestive, immune, reproductive, and nervous systems of fishes, wild animals, and humans, causing severe threats to ecological safety and human health. Gordonia has increasingly attracted attention in the treatment of alkane pollution for its outstanding performance against hydrophobic refractory substances. However, the lack of knowledge about alkane uptake and degradation restricts the application of gordonia. In this paper, we studied the strain lys1-3 of Gordonia sihwaniensis isolated from coal chemical wastewater, which showed good alkane degradation performance by lys1-3. It is found that stimulated by an alkane, lys1-3 secreted biosurfactants, which emulsified large alkane particles to smaller particles. By active transport, unmodified alkane was transferred into cells and produced a large amount of acid, which was secreted out of the cells.
Collapse
Affiliation(s)
- Yinsong Liu
- Laboratory
of Enhanced Oil Recovery of Education Ministry, Northeast Petroleum University, Daqing 163318, China
| | - Jingchun Wu
- Laboratory
of Enhanced Oil Recovery of Education Ministry, Northeast Petroleum University, Daqing 163318, China
| | - Yikun Liu
- Laboratory
of Enhanced Oil Recovery of Education Ministry, Northeast Petroleum University, Daqing 163318, China
| | - Xiaolin Wu
- PetroChina
Daqing Oilfield Co. Ltd., Institute of Exploration
and Development, Daqing 163002, China
| |
Collapse
|
4
|
Gonzalez E, Brereton NJB, Li C, Lopez Leyva L, Solomons NW, Agellon LB, Scott ME, Koski KG. Distinct Changes Occur in the Human Breast Milk Microbiome Between Early and Established Lactation in Breastfeeding Guatemalan Mothers. Front Microbiol 2021; 12:557180. [PMID: 33643228 PMCID: PMC7907006 DOI: 10.3389/fmicb.2021.557180] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Human breast milk contains a diverse community of bacteria, but as breast milk microbiome studies have largely focused on mothers from high income countries where few women breastfeed to 6 months, the temporal changes in the breast milk microbiome that occur during later lactation stages have not been explored. For this cross-sectional study, microbiota from breast milk samples of Mam-Mayan mothers living in eight remote rural communities in the Western Highlands of Guatemala were analyzed. All mothers delivered vaginally and breastfed their infants for 6 months. Breast milk from 76 unrelated mothers was used to compare two lactation stages, either “early” (6–46 days post-partum, n = 33) or “late” (109–184 days post-partum, n = 43). Breast milk microbial communities were assessed using 16S ribosomal RNA gene sequencing and lactation stages were compared using DESeq2 differential abundance analysis. A total of 1,505 OTUs were identified, including 287 which could be annotated as putative species. Among several maternal factors, lactation stage explained microbiome variance and inertia in ordination with the most significance (p < 0.001). Differential abundance analysis identified 137 OTUs as significantly higher in either early or late lactation. These included a general shift from Staphylococcus and Streptococcus species in early lactation to Sphingobium and Pseudomonas species in late lactation. Species enriched in early lactation included putative commensal bacteria known to colonize the infant oral and intestinal tracts whereas species enriched in late lactation had a uniform functional trait associated with aromatic compound degradation. Differentially abundant species also included several species which have not previously been reported within breast milk, such as Janthinobacterium agaricidamnosum, Novosphingobium clariflavum, Ottowia beijingensis, and Flavobacterium cucumis. These discoveries describe temporal changes to the breast milk microbiome of healthy Guatemalan mothers from early to late lactation. Collectively, these findings illustrate how studying under-represented human populations might advance our understanding of factors that modulate the human milk microbiome in low and middle income countries (LMIC).
Collapse
Affiliation(s)
- Emmanuel Gonzalez
- Canadian Centre for Computational Genomics (C3G), Department of Human Genetics, McGill University, Montréal, QC, Canada.,Microbiome Research Platform, McGill Interdisciplinary Initiative in Infection and Immunity (MI4), Genome Centre, McGill University, Montréal, QC, Canada
| | - Nicholas J B Brereton
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| | - Chen Li
- School of Human Nutrition, McGill University, Ste-Anne de Bellevue, QC, Canada
| | - Lilian Lopez Leyva
- School of Human Nutrition, McGill University, Ste-Anne de Bellevue, QC, Canada
| | - Noel W Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Luis B Agellon
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Marilyn E Scott
- Institute of Parasitology, McGill University, Ste-Anne de Bellevue, QC, Canada
| | - Kristine G Koski
- School of Human Nutrition, McGill University, Ste-Anne de Bellevue, QC, Canada
| |
Collapse
|
5
|
Wang J, Liu X, Jiang X, Zhang L, Hou C, Su G, Wang L, Mu Y, Shen J. Facilitated bio-mineralization of N,N-dimethylformamide in anoxic denitrification system: Long-term performance and biological mechanism. WATER RESEARCH 2020; 186:116306. [PMID: 32861183 DOI: 10.1016/j.watres.2020.116306] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Due to highly recalcitrant and toxicological nature of N,N-dimethylformamide (DMF), efficient removal of DMF is challenging for biological wastewater treatment. In this study, an anoxic denitrification system was developed and continuously operated for 220 days in order to verify the enhanced DMF biodegradation mechanism. As high as 41.05 mM DMF could be thoroughly removed in the anoxic denitrification reactor at hydraulic residence time (HRT) of 24 h, while the total organic carbon (TOC) and nitrate removal efficiencies were as high as 95.7 ± 2.5% and 98.4 ± 1.1%, respectively. Microbial community analyses indicated that the species related to DMF hydrolysis (Paracoccus, Brevundimonas and Chryseobacterium) and denitrification (Paracoccus, Arenimonas, Hyphomicrobium, Aquamicrobium and Bosea) were effectively enriched in the anoxic denitrification system. Transcriptional analysis coupled with enzymatic activity assay indicated that both hydrolysis and mineralization of DMF were largely enhanced in the anoxic denitrification system. Moreover, the occurrence of microbial denitrification distinctly facilitated carbon source utilization to produce electron and energy, which was rather beneficial for better reactor performance. This study demonstrated that the anoxic denitrification system would be a potential alternative for efficient treatment of wastewater polluted by recalcitrant pollutants such as DMF.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaolin Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Libin Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Cheng Hou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
6
|
Suleiman M, Schröder C, Kuhn M, Simon A, Stahl A, Frerichs H, Antranikian G. Microbial biofilm formation and degradation of octocrylene, a UV absorber found in sunscreen. Commun Biol 2019; 2:430. [PMID: 31799432 PMCID: PMC6874559 DOI: 10.1038/s42003-019-0679-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Octocrylene is a widely used synthetic UV absorber of sunscreens and found in several environments. Ecological consequences of the accumulation of UV filters are widely discussed. This is the first report revealing the microbial potential to transform octocrylene. A microbial community comprising four bacterial species was enriched from a landfill site using octocrylene as carbon source. From these microorganisms Mycobacterium agri and Gordonia cholesterolivorans were identified as most potent applying a new "reverse discovery" approach. This relies on the possibility that efficient strains that are already isolated and deposited can be identified through enrichment cultures. These strains formed massive biofilms on the octocrylene droplets. GC-MS analysis after cultivation for 10 days with M. agri revealed a decrease in octocrylene concentration of 19.1%. LC-MS/MS analysis was utilized in the detection and quantification of transformation products of octocrylene. M. agri thus represents an ideal candidate for bioremediation studies with octocrylene and related compounds.
Collapse
Affiliation(s)
- Marcel Suleiman
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), 21073 Hamburg, Germany
| | - Carola Schröder
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), 21073 Hamburg, Germany
| | - Michael Kuhn
- Beiersdorf Aktiengesellschaft, 20245 Hamburg, Germany
| | - Andrea Simon
- Central Laboratory of Analytical Chemistry, Hamburg University of Technology (TUHH), 21073 Hamburg, Germany
| | - Alina Stahl
- Central Laboratory of Analytical Chemistry, Hamburg University of Technology (TUHH), 21073 Hamburg, Germany
| | - Heike Frerichs
- Central Laboratory of Analytical Chemistry, Hamburg University of Technology (TUHH), 21073 Hamburg, Germany
| | - Garabed Antranikian
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), 21073 Hamburg, Germany
| |
Collapse
|
7
|
Sowani H, Kulkarni M, Zinjarde S. Harnessing the catabolic versatility of Gordonia species for detoxifying pollutants. Biotechnol Adv 2019; 37:382-402. [DOI: 10.1016/j.biotechadv.2019.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/12/2019] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
|
8
|
Tamayo-Ramos JA, Rumbo C, Caso F, Rinaldi A, Garroni S, Notargiacomo A, Romero-Santacreu L, Cuesta-López S. Analysis of Polycaprolactone Microfibers as Biofilm Carriers for Biotechnologically Relevant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32773-32781. [PMID: 30168313 DOI: 10.1021/acsami.8b07245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polymeric electrospun fibers are becoming popular in microbial biotechnology because of their exceptional physicochemical characteristics, biodegradability, surface-to-volume ratio, and compatibility with biological systems, which give them a great potential as microbial supports to be used in production processes or environmental applications. In this work, we analyzed and compared the ability of Escherichia coli, Pseudomonas putida, Brevundimonas diminuta, and Sphingobium fuliginis to develop biofilms on different types of polycaprolactone (PCL) microfibers. These bacterial species are relevant in the production of biobased chemicals, enzymes, and proteins for therapeutic use and bioremediation. The obtained results demonstrated that all selected species were able to attach efficiently to the PCL microfibers. Also, the ability of pure cultures of S. fuliginis (former Flavobacterium sp. ATCC 27551, a very relevant strain in the bioremediation of organophosphorus compounds) to form dense biofilms was observed for the first time, opening the possibility of new applications for this microorganism. This material showed to have a high microbial loading capacity, regardless of the mesh density and fiber diameter. A comparative analysis between PCL and polylactic acid (PLA) electrospun microfibers indicated that both surfaces have a similar bacterial loading capacity, but the former material showed higher resistance to microbial degradation than PLA.
Collapse
Affiliation(s)
- Juan Antonio Tamayo-Ramos
- International Research Centre in Critical Raw Materials-ICCRAM , University of Burgos , Plaza Misael Banuelos s/n , 09001 Burgos , Spain
| | - Carlos Rumbo
- International Research Centre in Critical Raw Materials-ICCRAM , University of Burgos , Plaza Misael Banuelos s/n , 09001 Burgos , Spain
- Departamento de Química, Facultad de Ciencias , University of Burgos , Plaza Misael Bañuelos s/n , 09001 Burgos , Spain
| | - Federica Caso
- Nanofaber srl. , Via Anguillarese 301 , 00123 Rome , Italy
| | - Antonio Rinaldi
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) , Casaccia Research Centre , Via Anguillarese 301 , 00123 Rome , Italy
| | - Sebastiano Garroni
- International Research Centre in Critical Raw Materials-ICCRAM , University of Burgos , Plaza Misael Banuelos s/n , 09001 Burgos , Spain
| | - Andrea Notargiacomo
- Institute for Photonics and Nanotechnology , CNR , Via Cineto Romano 42 , 00156 Rome , Italy
| | - Lorena Romero-Santacreu
- International Research Centre in Critical Raw Materials-ICCRAM , University of Burgos , Plaza Misael Banuelos s/n , 09001 Burgos , Spain
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology, Consolidated Research Unit UIC-154 , University of Burgos , Hospital del Rey s/n , Burgos , 09001 , Castilla y León, Spain
| | - Santiago Cuesta-López
- International Research Centre in Critical Raw Materials-ICCRAM , University of Burgos , Plaza Misael Banuelos s/n , 09001 Burgos , Spain
- Advanced Materials, Nuclear Technology and Applied Bio/Nanotechnology, Consolidated Research Unit UIC-154 , University of Burgos , Hospital del Rey s/n , Burgos , 09001 , Castilla y León, Spain
| |
Collapse
|
9
|
Prakash J, Sharma R, Patel SKS, Kim IW, Kalia VC. Bio-hydrogen production by co-digestion of domestic wastewater and biodiesel industry effluent. PLoS One 2018; 13:e0199059. [PMID: 29995877 PMCID: PMC6040696 DOI: 10.1371/journal.pone.0199059] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/30/2018] [Indexed: 11/18/2022] Open
Abstract
The increasing water crisis makes fresh water a valuable resource, which must be used wisely. However, with growing population and inefficient waste treatment systems, the amount of wastewater dispelled in rivers is increasing abominably. Utilizing this freely available waste-water along with biodiesel industry waste- crude glycerol for bio-hydrogen production is being reported here. The bacterial cultures of Bacillus thuringiensis strain EGU45 and Bacillus amyloliquefaciens strain CD16 produced2.4-3.0 L H2/day/L feed during a 60 days continuous culture system at hydraulic retention time of 2 days. An average H2 yield of 100-120 L/L CG was reported by the two strains. Recycling of the effluent by up to 25% resulted in up to 94% H2 production compared to control.
Collapse
Affiliation(s)
- Jyotsana Prakash
- Department of Chemical Engineering, Konkuk University, Seoul, Republic of Korea
- CSIR–Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Delhi, India
- Academy of Scientific & Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Rakesh Sharma
- CSIR–Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Delhi, India
| | - Sanjay K. S. Patel
- Department of Chemical Engineering, Konkuk University, Seoul, Republic of Korea
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, Seoul, Republic of Korea
- * E-mail: (VCK); (IWK)
| | - Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul, Republic of Korea
- CSIR–Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Delhi, India
- Academy of Scientific & Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
- * E-mail: (VCK); (IWK)
| |
Collapse
|
10
|
Hao L, Zhang B, Feng C, Zhang Z, Lei Z, Shimizu K, Cao X, Liu H, Liu H. Microbial vanadium (V) reduction in groundwater with different soils from vanadium ore mining areas. CHEMOSPHERE 2018; 202:272-279. [PMID: 29571148 DOI: 10.1016/j.chemosphere.2018.03.075] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 02/19/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
This work investigated the potential of vanadium (V) (V(V)) bioreduction by using soils sampled from four main kinds of vanadium ore mining areas, i.e. vanadium titanomagnetite, stone coal, petroleum associated minerals and uvanite as inocula. During a typical operation cycle of 60 h, the soils from vanadium titanomagnetite area and petroleum associated minerals area exhibited higher V(V) removal efficiencies, about 92.0 ± 2.0% and 91.0 ± 1.9% in comparison to 87.1 ± 1.9% and 69.0 ± 1.1% for the soils from uvanite and stone coal areas, respectively. Results from high-throughput 16 S rRNA gene pyrosequencing analysis reflect the accumulation of Bryobacter and Acidobacteriaceae with capabilities of V(V) reduction, accompanied with other functional species. This study is helpful to search new functional species for V(V) reduction and to develop in situ bioremediations of V(V) polluted groundwater.
Collapse
Affiliation(s)
- Liting Hao
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China
| | - Baogang Zhang
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China.
| | - Chuanping Feng
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305- 8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305- 8572, Japan
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305- 8572, Japan
| | - Xuelong Cao
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China
| | - Hui Liu
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China
| | - Huipeng Liu
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China
| |
Collapse
|
11
|
Feng AJ, Xiao X, Ye CC, Xu XM, Zhu Q, Yuan JP, Hong YH, Wang JH. Isolation and characterization of Burkholderia fungorum Gan-35 with the outstanding ammonia nitrogen-degrading ability from the tailings of rare-earth-element mines in southern Jiangxi, China. AMB Express 2017; 7:140. [PMID: 28655218 PMCID: PMC5484655 DOI: 10.1186/s13568-017-0434-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/16/2017] [Indexed: 11/12/2022] Open
Abstract
The exploitation of rare-earth-element (REE) mines has resulted in severe ammonia nitrogen pollution and induced hazards to environments and human health. Screening microorganisms with the ammonia nitrogen-degrading ability provides a basis for bioremediation of ammonia nitrogen-polluted environments. In this study, a bacterium with the outstanding ammonia nitrogen-degrading capability was isolated from the tailings of REE mines in southern Jiangxi Province, China. This strain was identified as Burkholderia fungorum Gan-35 according to phenotypic and phylogenetic analyses. The optimal conditions for ammonia–nitrogen degradation by strain Gan-35 were determined as follows: pH value, 7.5; inoculum dose, 10%; incubation time, 44 h; temperature, 30 °C; and C/N ratio, 15:1. Strain Gan-35 degraded 68.6% of ammonia nitrogen under the optimized conditions. Nepeta cataria grew obviously better in the ammonia nitrogen-polluted soil with strain Gan-35 than that without inoculation, and the decrease in ammonia–nitrogen contents of the former was also more obvious than the latter. Besides, strain Gan-35 exhibited the tolerance to high salinities. In summary, strain Gan-35 harbors the ability of both ammonia–nitrogen degradation at high concentrations and promoting plant growth. This work has reported a Burkholderia strain with the ammonia nitrogen-degrading capability for the first time and is also the first study on the isolation of a bacterium with the ammonia nitrogen-degrading ability from the tailings of REE mines. The results are useful for developing an effective method for microbial remediation of the ammonia nitrogen-polluted tailings of REE mines.
Collapse
|
12
|
Prakash J, Gupta RK, Xx P, Kalia VC. Bioprocessing of Biodiesel Industry Effluent by Immobilized Bacteria to Produce Value-Added Products. Appl Biochem Biotechnol 2017; 185:179-190. [PMID: 29101733 DOI: 10.1007/s12010-017-2637-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/16/2017] [Indexed: 12/28/2022]
Abstract
Biodiesel industrial effluent rich in crude glycerol (CG) was processed to produce value-added product. Under continuous culture system, Bacillus amyloliquefaciens strain CD16 immobilized within its biofilm, produced 3.2 L H2/day/L feed, over a period of 60 days at a hydraulic retention time of 2 days. The effective H2 yield by B. amyloliquefaciens strain CD16 was 165 L/L CG. This H2 yield was 1.18-fold higher than that observed with non-biofilm forming Bacillus thuringiensis strain EGU45. Bioprocessing of the effluent released after this stage, by recycling it up to 25% did not have any adverse effect on H2 production by strain EGU45; however, a 25% reduction in yield was recorded with strain CD16. Biofilm forming H2 producers thus proved effective as self-immobilizing system leading to enhanced process efficiency.
Collapse
Affiliation(s)
- Jyotsana Prakash
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007, India. .,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001, India.
| | - Rahul Kumar Gupta
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007, India
| | - Priyanka Xx
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001, India
| | - Vipin Chandra Kalia
- Microbial Biotechnology and Genomics, CSIR - Institute of Genomics and Integrative Biology (IGIB), Delhi University Campus, Mall Road, New Delhi, 110007, India.,Academy of Scientific and Innovative Research (AcSIR), 2, Rafi Marg, Anusandhan Bhawan, New Delhi, 110001, India
| |
Collapse
|
13
|
Wang J, Liu W, Liu T. Biofilm based attached cultivation technology for microalgal biorefineries-A review. BIORESOURCE TECHNOLOGY 2017; 244:1245-1253. [PMID: 28576483 DOI: 10.1016/j.biortech.2017.05.136] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
The attached cultivation for microalga has many superiorities over the conventional aqua-suspend methods, which make it a promising pathway to supply feedstock for microalgae based bio-refinery attempts. In this review, the current reports on bioreactor, application, modeling, substratum material and engineering aspects were summarized and the future research and developments should be focused on the following aspects: 1) Build principles and guidelines for rational structure design by studying the relationship of physiological properties with typical structures and light regimes; 2) Set up theory foundation of substratum material selection by studying the physic-chemical properties of algal cells and substratum materials; 3) Further understanding the mass transfer behaviors of both CO2 and nutrients in biofilm for enhanced growth rate and products accumulation; 4) New equipment and machines for inoculation, harvesting and moisture keeping should be developed and integrated with bioreactor structure.
Collapse
Affiliation(s)
- Junfeng Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, PR China
| | - Wen Liu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tianzhong Liu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, PR China.
| |
Collapse
|
14
|
Rochman FF, Sheremet A, Tamas I, Saidi-Mehrabad A, Kim JJ, Dong X, Sensen CW, Gieg LM, Dunfield PF. Benzene and Naphthalene Degrading Bacterial Communities in an Oil Sands Tailings Pond. Front Microbiol 2017; 8:1845. [PMID: 29033909 PMCID: PMC5627004 DOI: 10.3389/fmicb.2017.01845] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/08/2017] [Indexed: 11/13/2022] Open
Abstract
Oil sands process-affected water (OSPW), produced by surface-mining of oil sands in Canada, is alkaline and contains high concentrations of salts, metals, naphthenic acids, and polycyclic aromatic compounds (PAHs). Residual hydrocarbon biodegradation occurs naturally, but little is known about the hydrocarbon-degrading microbial communities present in OSPW. In this study, aerobic oxidation of benzene and naphthalene in the surface layer of an oil sands tailings pond were measured. The potential oxidation rates were 4.3 μmol L-1 OSPW d-1 for benzene and 21.4 μmol L-1 OSPW d-1 for naphthalene. To identify benzene and naphthalene-degrading microbial communities, metagenomics was combined with stable isotope probing (SIP), high-throughput sequencing of 16S rRNA gene amplicons, and isolation of microbial strains. SIP using 13C-benzene and 13C-naphthalene detected strains of the genera Methyloversatilis and Zavarzinia as the main benzene degraders, while strains belonging to the family Chromatiaceae and the genus Thauera were the main naphthalene degraders. Metagenomic analysis revealed a diversity of genes encoding oxygenases active against aromatic compounds. Although these genes apparently belonged to many phylogenetically diverse taxa, only a few of these taxa were predominant in the SIP experiments. This suggested that many members of the community are adapted to consuming other aromatic compounds, or are active only under specific conditions. 16S rRNA gene sequence datasets have been submitted to the Sequence Read Archive (SRA) under accession number SRP109130. The Gold Study and Project submission ID number in Joint Genome Institute IMG/M for the metagenome is Gs0047444 and Gp0055765.
Collapse
Affiliation(s)
- Fauziah F Rochman
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Andriy Sheremet
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ivica Tamas
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.,Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Alireza Saidi-Mehrabad
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joong-Jae Kim
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Xiaoli Dong
- Department of Biochemistry and Molecular Biology in the Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Christoph W Sensen
- Department of Biochemistry and Molecular Biology in the Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Al-Mailem DM, Kansour MK, Radwan SS. Capabilities and limitations of DGGE for the analysis of hydrocarbonoclastic prokaryotic communities directly in environmental samples. Microbiologyopen 2017; 6. [PMID: 28516483 PMCID: PMC5635167 DOI: 10.1002/mbo3.495] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 11/12/2022] Open
Abstract
Prokaryotic communities in pristine and oil-contaminated desert soil, seawater, and hypersaline coastal soil were analyzed using culture-dependent and culture-independent approaches. The former technique was the dilution-plating method. For the latter, total genomic DNA was extracted and the 16S rRNA genes were amplified using a universal bacterial primer pair and primer pairs specific for Actinobacteria, Gammaproteobacteria, and Archaea. The amplicons were resolved using denaturing gradient gel electrophoresis (DGGE) and sequenced, and the sequences were compared to those in GenBank. The plating method offered the advantages of capturing the targeted hydrocarbonoclastic microorganisms, counting them and providing cultures for further study. However, this technique could not capture more than a total of 15 different prokaryotic taxa. Those taxa belonged predominantly to the genera Alcanivorax, Pseudoxanthomonas, Bosea, Halomonas, and Marinobacter. The individual isolates in culture consumed between 19 and 50% of the available crude oil in 10 days. Although the culture-independent approach revealed much more microbial diversity, it was not problem-free. The subdivision primers exhibited satisfactory specificity, but they failed to capture all the available taxa. The universal bacterial primer pair ignored Actinobacteria altogether, although the primer pair specific for Actinobacteria captured many of them, for example, the genera Geodermatophilus, Streptomyces, Mycobacterium, Pontimonas, Rhodococcus, Blastococcus, Kocuria, and many others. Because most researchers worldwide use universal primers for PCR, this finding should be considered critically to avoid misleading interpretations.
Collapse
Affiliation(s)
- Dina M Al-Mailem
- Microbiology Program, Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Mayada K Kansour
- Microbiology Program, Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Samir S Radwan
- Microbiology Program, Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| |
Collapse
|
16
|
Thelusmond JR, Strathmann TJ, Cupples AM. The identification of carbamazepine biodegrading phylotypes and phylotypes sensitive to carbamazepine exposure in two soil microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:1241-1252. [PMID: 27481454 DOI: 10.1016/j.scitotenv.2016.07.154] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 06/06/2023]
Abstract
Carbamazepine (CBZ), an antiepileptic drug, has been introduced into agricultural soils via irrigation with treated wastewater and biosolids application. Such contamination is problematic because CBZ is persistent and the risks to ecosystems or human health are unknown. The current study examined CBZ biodegradation in two agricultural soils (soil 1 and 2) and the effects on the soil microbial communities during CBZ exposure. The experimental design involved three CBZ concentrations (50, 500, 5000ng/g), under aerobic as well as anaerobic conditions. CBZ concentrations were determined using solid phase extraction and LC MS/MS. The effect of CBZ on the soil microbial community was investigated using high throughput sequencing and a computational approach to predict functional composition of the metagenomes (phylogenetic investigation of communities by reconstruction of unobserved states, PICRUSt). The most significant CBZ biodegradation occurred in soil 1 under aerobic conditions. In contrast, CBZ biodegradation was limited under anaerobic conditions in soil 1 and under both conditions in soil 2. For soil 1, several phylotypes were enriched following CBZ degradation compared to the controls, including unclassified Sphingomonadaceae, Xanthomonadaceae and Rhodobacteraceae, as well as Sphingomonas, Aquicella and Microvirga. These phylotypes are considered putative CBZ degraders as they appear to be benefiting from CBZ biodegradation. PICRUSt revealed that soil 1 contained a greater abundance of xenobiotic degrading genes compared to soil 2, and thus, this analysis method offers a potential valuable approach for predicting CBZ attenuation in soils. PICRUSt analysis also implicated Sphingomonadaceae and Xanthomonadaceae in drug metabolism. Interestingly, numerous phylotypes decreased in abundance following CBZ exposure and these varied with soil type, concentration, duration of exposure, and the availability of oxygen. For three phylotypes (Flavobacterium, 3 genus incertae sedis and unclassified Bacteroidetes), the relative abundance was reduced in both soils, indicating a notable sensitivity to CBZ for these microorganisms.
Collapse
Affiliation(s)
- Jean-Rene Thelusmond
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
17
|
Wolińska A, Kuźniar A, Szafranek-Nakonieczna A, Jastrzębska N, Roguska E, Stępniewska Z. Biological Activity of Autochthonic Bacterial Community in Oil-Contaminated Soil. WATER, AIR, AND SOIL POLLUTION 2016; 227:130. [PMID: 27076689 PMCID: PMC4820484 DOI: 10.1007/s11270-016-2825-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/17/2016] [Indexed: 05/06/2023]
Abstract
Soil microbial communities play an important role in the biodegradation of different petroleum derivates, including hydrocarbons. Also other biological factors such as enzyme and respiration activities and microbial abundance are sensitive to contamination with petroleum derivates. The aim of this study was to evaluate the response of autochthonic microbial community and biological parameters (respiration, dehydrogenase and catalase activities, total microorganisms count) on contamination with car fuels and engine oils. The surface layer (0-20 cm) of Mollic Gleysol was used for the experiment. In laboratory conditions, soil was contaminated with the following petroleum substances: car fuels (petrol, diesel) and car engine oils (new and waste-after 10,000 km). The results demonstrated that, among the investigated hydrocarbon substances, petrol addition seemed to be the most toxic for the microbial activity of the investigated soil. The toxicity of the used hydrocarbon substances to microorganisms might be summarized as follows: diesel > new oil > waste oil > petrol. Species belonging to the genera Micrococcus and Rhodococcus were noted as the major autochthonic bacteria being present in soil contaminated with new automobile oil, whereas species of the genera Bacillus sp. and Paenibacillus sp. were identified in the combination treated with waste oil.
Collapse
Affiliation(s)
- Agnieszka Wolińska
- Institute of Biotechnology, Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708 Lublin, Poland
| | - Agnieszka Kuźniar
- Institute of Biotechnology, Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708 Lublin, Poland
| | - Anna Szafranek-Nakonieczna
- Institute of Biotechnology, Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708 Lublin, Poland
| | - Natalia Jastrzębska
- Institute of Biotechnology, Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708 Lublin, Poland
| | - Eliza Roguska
- Institute of Biotechnology, Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708 Lublin, Poland
| | - Zofia Stępniewska
- Institute of Biotechnology, Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708 Lublin, Poland
| |
Collapse
|
18
|
Phi Doan CD, Sano A, Tamaki H, Duc Pham HN, Duong XH, Terashima Y. Identification and biodegradation characteristics of oil-degrading bacteria from subtropical Iriomote Island, Japan, and tropical Con Dao Island, Vietnam. TROPICS 2016. [DOI: 10.3759/tropics.ms16-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Cong Dang Phi Doan
- Tropical Biosphere Research Center, University of the Ryukyus
- The United Graduate School of Agricultural Sciences, Kagoshima University
- Vietnam Petroleum Institute, Research and Development Center for Petroleum Safety and Environment
| | - Ayako Sano
- Faculty of Agriculture, University of the Ryukyus
| | - Hisanori Tamaki
- The United Graduate School of Agricultural Sciences, Kagoshima University
| | | | | | | |
Collapse
|