1
|
Liu Y, Yuan H, Zhu N. Accelerated stabilization of high solid sludge by thermal hydrolysis pretreatment in autothermal thermophilic aerobic digestion (ATAD) process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115615. [PMID: 35772274 DOI: 10.1016/j.jenvman.2022.115615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Autothermal thermophilic aerobic digestion (ATAD) is a rapid biological treatment technology for sludge stabilization. To improve digestion efficiency and shorten stabilization time, thermal hydrolysis pretreatment was employed before ATAD of high solid sludge. The results showed that accelerated stabilization of high solid sludge (total solid = 10.1%) was achieved by thermal hydrolysis pretreatment with volatile solid removal efficiency of 40.3% after 8 days of ATAD, 11 days earlier than unpretreated sludge. The enhanced release and hydrolysis of intracellular organics resulted in a solubilization degree of 45.3%. The reduced sludge viscosity and improved fluidity after thermal hydrolysis facilitated mixing, aeration and organics degradation during ATAD. Excitation emission matrix analysis indicated that the fluorescence intensity of soluble microbial byproduct and tyrosine-like protein increased markedly after thermal hydrolysis and decreased after ATAD. The proportion of high molecular weight (MW > 10 kDa) substances in the supernatant increased significantly after thermal hydrolysis, while the low MW (MW < 1 kDa) substances decreased after ATAD. The significant difference in microbial composition between the pretreatment and control groups elucidated the accelerated sludge stabilization under thermal hydrolysis. This work provides an efficient and practical strategy to achieve rapid stabilization of high solid sludge.
Collapse
Affiliation(s)
- Yangyang Liu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Zhang M, Tashiro Y, Ishida N, Sakai K. Application of autothermal thermophilic aerobic digestion as a sustainable recycling process of organic liquid waste: Recent advances and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154187. [PMID: 35240167 DOI: 10.1016/j.scitotenv.2022.154187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Autothermal thermophilic aerobic digestion (ATAD) has been used to stabilize organic waste since the 1960s and is considered sustainable technology. ATAD has several advantages, including high biodegradation efficiency, pathogen inactivation, and ease of operation. Although ATAD research has a long history, the number of studies on ATAD is much lower than those on similar aerobic processes, particularly composting. Previous review articles addressed the origin, design, operational experiences, metabolism, and the microorganisms at the thermophilic stage of ATAD. This article reviews the digestion systems, applications, and characteristics of ATAD; compares system performance and microbial community structure of ATAD with those of other biological processes such as composting, activated sludge, and anaerobic digestion; and discusses the physicochemical properties and factors of ATAD. The challenges, opportunities, and prospects for the application of ATAD are also discussed. This review suggests that ATAD is feasible for treating organic liquid waste (1-6% total solid content) in small-sized towns and can help establish a sustainable society.
Collapse
Affiliation(s)
- Min Zhang
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| | - Natsumi Ishida
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Wang Y, Guo L, Zhang J, She Z, Jin C, Gao M, Zhao Y. Optimization of operating conditions for the acidification metabolites production with waste sludge using response surface methodology (RSM). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30303-30312. [PMID: 31432371 DOI: 10.1007/s11356-019-06088-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
The acidification liquid of waste activated sludge (WAS) could be used as the additional carbon source of biological nutrient removal. Recently, the optimization of operating conditions for the acidification metabolites has attracted much attention. In this study, a three-factor Box-Behnken design (BBD) was applied to determine the relative importance of the various factors and the optimum operating during acidification using response surface method (RSM). The importance of the individual variables on the production of soluble chemical oxygen demand (SCOD) was suspended solids (SS) > shaking rate > initial oxidation-reduction potential (ORP). The increase on SS content led to a decrease on the acidification degree. Low SS could promote mass exchange and microbial activity. The maximum SCOD yield (9288.5 mg/L) was predicted under the optimum condition at 8.0 g/L SS, 144.0 mV initial ORP, and 60.0 r/min shaking rate. Also, the releasing of soluble protein and carbohydrate was calculated as responses. The individual effect of shaking rate and initial ORP had significant effect on soluble protein and carbohydrate releasing, respectively. This study would provide valuable information for increasing the efficiency of acidification.
Collapse
Affiliation(s)
- Yu Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Jiawen Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|