1
|
Eslami-Farsani R, Farhadian S, Shareghi B, Asgharzadeh S, Behjati Moghaddam M, Momeni L, Assaran-Darban R, Evini M. Evaluation of the structure and stability of myoglobin after interaction with ribose: spectroscopic and molecular simulation approach. J Biomol Struct Dyn 2025:1-12. [PMID: 40314693 DOI: 10.1080/07391102.2025.2499223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/24/2024] [Indexed: 05/03/2025]
Abstract
Osmolytes, as small organic molecules, possess a remarkable ability to exert protective effects on biomacromolecules, including proteins, while preserving their inherent functionality. Myoglobin, a globular protein comprising a sequence of 153 amino acids, fulfills a crucial biological role by exhibiting reversible oxygen binding capabilities and facilitating its efficient transfer to the muscular tissues. In this study, the effects of ribose on myoglobin protein in sodium phosphate buffer were studied by UV-Vis's spectrophotometry and spectrofluorimetric investigations at pH 7.4. Also, the interaction was theoretically studied through molecular dynamics simulation and molecular docking techniques. The results showed that the ribose stabilizes the protein structure by increasing the melting temperature (Tm) of myoglobin. The fluorescence intensity of myoglobin decreased with a static quenching mechanism at different temperatures. The thermodynamic data obtained from the experimental results also predicted that the intermolecular forces affecting the formation of a myoglobin-ribose complex are mainly the van der Waals interactions and hydrogen bindings. Theoretical molecular docking analyses unveiled the favored binding site of ribose within the structure of myoglobin. Subsequent molecular dynamics simulations validated the stability of the complex formed between ribose and myoglobin. Our findings are fundamental for understanding the molecular-level details of myoglobin-ligand interactions, opening avenues for innovative approaches to prevent or alleviate myoglobin dysfunction in various disease conditions.
Collapse
Affiliation(s)
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Central Laboratory, Shahrekord University, Shahrekord, Iran
| | | | - Lida Momeni
- Department of Biology, Faculty of Science, University of Payam Noor, Tehran, Iran
| | - Reza Assaran-Darban
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mina Evini
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Vishwakarma J, Sharma S, Takkella D, Gavvala K. Unveiling differential interaction pattern for iminium and alkanolamine forms of Sanguinarine with β-Lactoglobulin protein. Int J Biol Macromol 2024; 283:137721. [PMID: 39566808 DOI: 10.1016/j.ijbiomac.2024.137721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
A comparative study on the interaction of two tautomeric forms of sanguinarine (SANG), an alkaloid with therapeutic properties, with β-lactoglobulin (β-LG) protein was explored using spectroscopic and computational methods. The spectroscopic study reveals a high binding affinity for alkanolamine to monomeric β-LG (at pH = 9) as compared to iminium to dimeric β-LG (at pH = 6.2). Temperature dependent fluorescence study provides thermodynamic parameters for the binding process. Circular dichroism spectra showed changes in the secondary structure of the protein with major conformational transition from α-helix to β-sheets. Molecular docking and MD simulation validate the stable protein-drug complex during a 200 ns simulation period. All results clearly depict the differential interactions of two forms of SANG with β-LG protein. Overall, the characterization of SANG binding interactions with the whey milk protein provides valuable insights for pharmacological research and design of novel drug carriers based on β-LG protein.
Collapse
Affiliation(s)
- Jyoti Vishwakarma
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Sudhanshu Sharma
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Dineshbabu Takkella
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Krishna Gavvala
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| |
Collapse
|
3
|
Fathi Z, Avanes A, Jahanafrooz Z. In vitro study on the anticancer effects of oxalipalladium against PC3 human prostate carcinoma cells. Toxicol Appl Pharmacol 2024; 490:117021. [PMID: 38971382 DOI: 10.1016/j.taap.2024.117021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Prostate cancer is a common type of cancer in men with high incidence and mortality. Our aim was to investigate the effects of oxalipalladium (ox-Pd) on metastatic human prostate cancer PC3 cells and compare them with the effects of oxaliplatin (ox-Pt) (as an approved cancer drug). We synthesized ox-Pd through a new chemical method and used FT-IR, 1H NMR, 13C NMR, and MS analyzes to characterize it. The effects of ox-Pd on PC3 cells viability, apoptosis, cell cycle, migration, and gene expression were examined. Inhibition of topoisomerase IIα activity was investigated by pHOT1 plasmid relaxation and kDNA decatenation assays. Chemical tests showed ox-Pd with the correct composition and structure. For the first time, the exact fragmentation pathway of ox-Pd and its difference with ox-Pt was obtained by MS analysis. Ox-Pd significantly decreased PC3 cell viability with less/no toxicity effect on MHFB-1 normal skin fibroblasts. Wound scratch assay confirmed the strong anti-migratory activity of ox-Pd. According to flow cytometry analysis, this drug increased the number of PC3 cells in late apoptosis and decreased DNA replication and mitosis. Furthermore, pHOT1 plasmid relaxation and kDNA decatenation assays showed that ox-Pd strongly inhibited the catalytic activity of topoisomerase IIα. The expression of topoisomerase IIα, Bcl-2, P21, and survivin was decreased while the expression of Bax and p53 was increased under ox-Pd treatment. We provide the first evidence that ox-Pd exhibits more selective anticancer effects on PC3 cells compared to ox-Pt. Taken together, these data strongly suggest a therapeutic window for ox-Pd in cancer.
Collapse
Affiliation(s)
- Zahra Fathi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran; Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Armen Avanes
- Department of Chemistry, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran.
| |
Collapse
|
4
|
Jennings CC, Freidenberger M, Christensen SA, Conlin J, Freidenberger O, Kenealey JD. Thermal characterization and separation of whey proteins by differential scanning calorimetry. Food Chem 2024; 441:138347. [PMID: 38183724 DOI: 10.1016/j.foodchem.2023.138347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/16/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Most commercially available whey products contain a mixture of 6-7 whey proteins; however, there is an increased focus on using the individual whey proteins for their unique biological activities. Before extracting individual whey proteins for use, it is important to quantify how much of a particular protein is present in whey mixtures as well as if the protein is still structurally folded. We first characterized the denaturation temperature and enthalpy values for the six purified whey proteins at six pHs (3-9) and under ion chelation using a nano-differential scanning calorimeter (DSC). From the individual protein scans, we determined the optimal condition for detecting all 6 proteins on a single DSC scan was whey in an EDTA MOPs pH 6.7 buffer.
Collapse
Affiliation(s)
- Charity C Jennings
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, UT 84606, United States
| | - McCall Freidenberger
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, UT 84606, United States
| | - Shawn A Christensen
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, UT 84606, United States
| | - Joy Conlin
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, UT 84606, United States
| | - Olivia Freidenberger
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, UT 84606, United States
| | - Jason D Kenealey
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, UT 84606, United States.
| |
Collapse
|
5
|
Ghasemi M, Habibian-Dehkordi S, Farhadian S. Change in thermal stability and molecular structure characteristics of whey protein beta-lactoglobulin upon the interaction with levamisole hydrochloride. Food Chem 2024; 431:137073. [PMID: 37598650 DOI: 10.1016/j.foodchem.2023.137073] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023]
Abstract
The interaction between beta-lactoglobulin (BLG) and anthelmintic compounds including levamisole (LEV) is a matter of great concern as it not only poses potential health and environmental risks but also has significant implications for food processing and production. The mechanisms of LEV-BLG interaction were investigated through spectral and molecular modeling approaches. Fluorescence and UV-Visible investigations indicated the formation of a spontaneous and stable LEV-BLG complex. Structural changes of BLG were revealed by circular dichroism and Fourier transform infrared studies. The thermal stability of BLG increased in the presence of LEV. Molecular docking studies indicated the best mode of LEV-BLG interaction and molecular dynamics simulation confirmed the stability of the LEV-BLG complex. In conclusion, our study sheds light on the potential of BLG to interact with deleterious substances such as anthelmintic agents, thus highlighting the necessity of further research in this field to assure food safety and prevent any health hazards.
Collapse
Affiliation(s)
- Mohammad Ghasemi
- Department of Pharmacology, School of Veterinary Medicine, Shahrekord University, P. O. Box 115, Shahrekord, Iran
| | - Saied Habibian-Dehkordi
- Department of Pharmacology, School of Veterinary Medicine, Shahrekord University, P. O. Box 115, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box 115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
6
|
Xiao J, Ma J, Khan MZ, Alugongo GM, Chen T, Liu S, Li S, Cao Z. Unlocking the potential of milk whey protein components in colorectal cancer prevention and therapy. Crit Rev Food Sci Nutr 2023; 64:12961-12998. [PMID: 37846905 DOI: 10.1080/10408398.2023.2258970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Extensive research from large prospective cohort studies and meta-analytical investigations over recent decades have consistently indicated that dairy foods have protective effects, reducing the risk of colorectal cancer. Most of the literature has explored the potential role of milk minerals and vitamins in managing colorectal cancer. Yet, there is a paucity of a comprehensive summary of the anticancer attributes of milk protein components and their underlying mechanisms of action. Recent advancements have spotlighted the potential of whey proteins, including β-lactoglobulin, α-lactalbumin, serum albumin, and lactoferrin, as promising candidates for both the prevention and treatment of colorectal cancer. Notably, whey proteins have demonstrated a more pronounced capacity for suppressing carcinogen-induced tumors when compared to casein. Their strong binding affinity enables them to serve as effective carriers for small molecules or drugs targeting colon cancer therapy. Furthermore, numerous studies have underscored the anti-inflammatory and antioxidant prowess of whey proteins in cancer prevention. Additionally, whey proteins have been shown to trigger apoptosis, hinder tumor cell proliferation, and impede metastasis. This comprehensive review, therefore, not only substantiates the significance of incorporating whey protein components into a balanced daily diet but also underscores their potential in safeguarding against the onset and progression of colorectal cancer.
Collapse
Affiliation(s)
- Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jiaying Ma
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- Faculty of Veterinary and Animal Sciences, University of Agriculture Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Gibson Maswayi Alugongo
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Karan P, Shit B, Panja P, Khatun A, Pal J, Chakarabarti S, Pal S, Ghosh A, Hossain M. Synthesis of water-soluble novel bioactive pyridine-based azo coumarin derivative and competitive cytotoxicity, DNA binding, BSA binding study, and in silico analysis with coumarin. Bioorg Chem 2023; 138:106532. [PMID: 37172438 DOI: 10.1016/j.bioorg.2023.106532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023]
Abstract
The diazo coupliling reaction of 3- amino pyridine with coumarin in water medium produces water soluble 6-[3-pyridyl]azocoumarin. The synthesised compound has been fully charecterised by IR, NMR, and Mass spectroscopy. The frontier molecular orbital calculations reveal that 6-[3-pyridyl]azocoumarin is more biologically and chemically active in comparison to coumarin. The cytotoxicity evaluation confirms that 6-[3-pyridyl]azocoumarin is more active than coumarin against human brain glioblastoma cell lines, LN-229 with IC50 value 9.09 μM (IC50 value for coumarin is 9.9 μM). The compound (I) has been synthesized by coupling of diazotized solution of 3-aminopyridine with coumarin in an aqueous medium at ∼ pH 10. The structure of the compound (I) has been characterized using UV-vis, IR, NMR, and Mass spectral studies. Frontier molecular orbital calculations reveal that 6-[3-pyridyl]azocoumarin (I) is more active chemically and biologically in comparison to coumarin. IC50 value 9.09 and 9.9 μM of 6-[3-pyridyl]azocoumarin and coumarin respectively obtained in cytotoxicity evaluation confirms the enhanced activity of the synthesized compound against human brain glioblastoma cell lines, LN-229. The synthesized compound also shows strong binding interactions with DNA and BSA in comparison with coumarin. The DNA binding study shows groove binding interaction of the synthesized compound with CT-DNA. The nature of interaction, binding parameters and structural variations of BSA in the presence of the synthesized compound and coumarin have been evaluated using several usefull spectroscopy approaches such as UV -Vis, time resolved and stady state flurescence. The molecular docking interaction has been carried out to justify the experimental binding interaction with DNA and BSA.
Collapse
Affiliation(s)
- Putul Karan
- Department of Chemistry, Midnapore City College, Kuturia, Bhadutala, PaschimMedinipur, West Bengal 721129, India; Midnapore City College, Kuturia, Bhadutala, PaschimMedinipur, West Bengal 721129, India
| | - Basudev Shit
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Poulami Panja
- Department of Chemistry, Indian Institute Of Technology, Kharagpur, West Bengal 721302, India
| | - Amina Khatun
- Department of Biological Science, Midnapore City College, Kuturia, Bhadutala, PaschimMedinipur, West Bengal 721129, India; Midnapore City College, Kuturia, Bhadutala, PaschimMedinipur, West Bengal 721129, India
| | - Jagannath Pal
- Department of Chemistry, Midnapore City College, Kuturia, Bhadutala, PaschimMedinipur, West Bengal 721129, India; Midnapore City College, Kuturia, Bhadutala, PaschimMedinipur, West Bengal 721129, India
| | - Sudipta Chakarabarti
- Department of Biological Science, Midnapore City College, Kuturia, Bhadutala, PaschimMedinipur, West Bengal 721129, India; Midnapore City College, Kuturia, Bhadutala, PaschimMedinipur, West Bengal 721129, India
| | - Sutanuka Pal
- SutanukaPal, TCG Life Sciences, Salt Lake Sector V, Kolkata 700091, India
| | - Avishek Ghosh
- Department of Chemistry, Midnapore City College, Kuturia, Bhadutala, PaschimMedinipur, West Bengal 721129, India; Midnapore City College, Kuturia, Bhadutala, PaschimMedinipur, West Bengal 721129, India.
| | - Maidul Hossain
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|
8
|
Yadav N, Mor S, Venkatesu P. The attenuating ability of deep eutectic solvents towards the carboxylated multiwalled carbon nanotubes induced denatured β-lactoglobulin structure. Phys Chem Chem Phys 2023. [PMID: 37470288 DOI: 10.1039/d3cp02908e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The stabilization of proteins has been a major challenge for their practical utilization in industrial applications. Proteins can easily lose their native conformation in the presence of denaturants, which unfolds the protein structure. Since the introduction of deep eutectic solvents (DESs), there are numerous studies in which DESs act as promising co-solvents that are biocompatible with biomolecules. DESs have emerged as sustainable biocatalytic media and an alternative to conventional organic solvents and ionic liquids (ILs). However, the superiority of DESs over the deleterious influence of denaturants on proteins is often neglected. To address this, we present the counteracting ability of biocompatible DESs, namely, choline chloride-glycerol (DES-1) and choline chloride-urea (DES-2), against the structural changes induced in β-lactoglobulin (Blg) by carboxylated multiwalled carbon nanotubes (CA-MWCNTs). The work is substantiated with various spectroscopic and thermal studies. The spectroscopic results revealed that the fluorescence emission intensity enhances for the protein in DESs. Contrary to this, the emission intensity extremely quenches in the presence of CA-MWCNTs. However, in the mixture of DESs and CA-MWCNTs, there was a slight increase in the fluorescence intensity. Circular dichroism spectral studies reflect the reappearance of the native band that was lost in the presence of CA-MWCNTs, which is a good indicator of the counteraction ability of DESs. Further, thermal fluorescence studies showed that the protein exhibited extremely great thermal stability in both DESs as well as in the mixture of DES-CA-MWCNTs compared to the protein in buffer. This study is also supported by dynamic light scattering and zeta potential measurements; the results reveal that DESs were successfully able to maintain the protein structure. The addition of CA-MWCNTs results in complex formation with the protein, which is indicated by the increased hydrodynamic size of the protein. The presence of DESs in the mixture of CA-MWCNTs and DESs was quite successful in eliminating the negative impact of CA-MWCNTs on protein structural alteration. DES-1 proved to be superior to DES-2 over counteraction against CA-MWCNTs and maintained the native conformation of the protein. Overall, both DESs act as recoiling media for both native and unfolded (denatured by CA-MWCNTs) Blg structures. Both the DESs can be described as potential co-solvents for Blg with increased structural and thermal stability of the protein. To the best of our knowledge, this study for the first time has demonstrated the role of choline-based DESs in the mixture with CA-MWCNTs in the structural transition of Blg. The DESs in the mixture successfully enhance the stability of the protein by reducing the perturbation caused by CA-MWCNTs and then amplifying the advantages of the DESs present in the mixture. Overall, these results might find implications for understanding the role of DES-CA-MWCNT mixtures in protein folding/unfolding and pave a new direction for the development of eco-friendly protein-protective solvents.
Collapse
Affiliation(s)
- Niketa Yadav
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Sanjay Mor
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Pannuru Venkatesu
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
9
|
Mohammed LJ, Taheri-Kafrani A. Fabrication of doxorubicin loaded aptamer-functionalized cationic β-lactoglobulin nanocomplex: A biocompatible multifunctional nanoplatform for encapsulation and controlled release of anticancer drugs. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
10
|
Mahaki H, Mansourian M, Meshkat Z, Avan A, Shafiee MH, Mahmoudian RA, Ghorbani E, Ferns GA, Manoochehri H, Menbari S, Sheykhhasan M, Tanzadehpanah H. Nanoparticles Containing Oxaliplatin and the Treatment of Colorectal Cancer. Curr Pharm Des 2023; 29:3018-3039. [PMID: 37990895 DOI: 10.2174/0113816128274742231103063738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly widespread malignancy and ranks as the second most common cause of cancer-related mortality. OBJECTIVE Cancer patients, including those with CRC, who undergo chemotherapy, are often treated with platinum- based anticancer drugs such as oxaliplatin (OXA). Nevertheless, the administration of OXA is associated with a range of gastrointestinal problems, neuropathy, and respiratory tract infections. Hence, it is necessary to devise a potential strategy that can effectively tackle these aforementioned challenges. The use of nanocarriers has shown great potential in cancer treatment due to their ability to minimize side effects, target drugs directly to cancer cells, and improve drug efficacy. Furthermore, numerous studies have been published regarding the therapeutic efficacy of nanoparticles in the management of colorectal cancer. METHODS In this review, we present the most relevant nanostructures used for OXA encapsulation in recent years, such as solid lipid nanoparticles, liposomes, polysaccharides, proteins, silica nanoparticles, metal nanoparticles, and synthetic polymer-carriers. Additionally, the paper provides a summary of the disadvantages and limits associated with nanoparticles. RESULTS The use of different carriers for the delivery of oxaliplatin increased the efficiency and reduced the side effects of the drug. It has been observed that the majority of research investigations have focused on liposomes and polysaccharides. CONCLUSION This potentially auspicious method has the potential to enhance results and enhance the quality of life for cancer patients undergoing chemotherapy. However, additional investigation is required to ascertain the most suitable medium for the transportation of oxaliplatin and to assess its efficacy through clinical trials.
Collapse
Affiliation(s)
- Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Mansourian
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | | | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shaho Menbari
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohsen Sheykhhasan
- Qom University of Medical Science and Health Services Mesenchymal Stem Cells Qom Iran
- Department of Mesenchymal Stem Cells, Qom University of Medical Science and Health Services, Qom, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
A Combined Spectroscopy and Computational Molecular Docking Investigation on the Coupling Between β-lactoglobulin Dimers and Vanillin. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Habibian-Dehkordi S, Farhadian S, Ghasemi M, Evini M. Insight into the binding behavior, structure, and thermal stability properties of β-lactoglobulin/Amoxicillin complex in a neutral environment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Farajzadeh-Dehkordi N, Farhadian S, Zahraei Z, Asgharzadeh S, Shareghi B, Shakerian B. Insights into the binding interaction of Reactive Yellow 145 with human serum albumin from a biophysics point of view. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Lu Y, Zhao R, Wang C, Zhang X, Wang C. Deciphering the non-covalent binding patterns of three whey proteins with rosmarinic acid by multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Asemi-Esfahani Z, Shareghi B, Farhadian S, Momeni L. Food additive dye–lysozyme complexation: Determination of binding constants and binding sites by fluorescence spectroscopy and modeling methods. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Dharani S, Kalaiarasi G, Ravi M, Sathan Raj N, Lynch VM, Prabhakaran R. Diosgenin derivatives developed from Pd(II) catalysed dehydrogenative coupling exert an effect on breast cancer cells by abrogating their growth and facilitating apoptosis via regulating the AKT1 pathway. Dalton Trans 2022; 51:6766-6777. [PMID: 35420095 DOI: 10.1039/d2dt00514j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Palladium metallates containing 4-oxo-4H-chromene-3-carbaldehyde derived ONS donor Schiff bases were synthesized and their efficacy was tested in the direct amination of diosgenin - a phyto steroid. Based on the pharmacological importance of diosgenin, the obtained derivatives were exposed to study their effect on breast cancer cells where they significantly reduced the growth of cancer cells and left non-malignant breast epithelial cells unaffected. Among the derivatives, D3, D4 and D6 showed a better anti-proliferative effect and further analysis revealed that the D3, D4 and D6 derivatives markedly promoted cell cycle arrest and apoptosis by attenuation of the AKT1 signalling pathway.
Collapse
Affiliation(s)
- S Dharani
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India.
| | - G Kalaiarasi
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India.
| | - M Ravi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India.
| | - N Sathan Raj
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India.
| | - Vincent M Lynch
- Department of Chemistry, University of Texas, Austin, TX 78712-1224, USA
| | - R Prabhakaran
- Department of Chemistry, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
17
|
Eslami-Farsani R, Farhadian S, Shareghi B. Exploring the structural basis of conformational alterations of myoglobin in the presence of spermine through computational modeling, molecular dynamics simulations, and spectroscopy methods. J Biomol Struct Dyn 2022; 40:3581-3594. [PMID: 33308044 DOI: 10.1080/07391102.2020.1848633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Spermine as polyamines can have interaction with the myoglobin (Mb). The intent of this pondering to evaluate the impact of spermine on Mb properties, for example, the structure and thermal stability. For this analysis, the following approaches are employed. Thermodynamics, molecular dynamics (MD), and docking and the use of other spectroscopic procedures. The results of fluorescence spectroscopy and docking showed that binding spermine to Mb was spontaneous. Spermine quenched the fluorescence of Mb through the static quenching process. The thermal stability of Mb was incremented when the concentration of spermine increased. The CD spectra showed Mb's secondary structure shift with a rise in β-sheet and a decrease in α-helicity Mb's in spermine presence. Molecular docking and MD simulation outcomes demonstrate that electrostatic forces show a critical function in stabilizing of this complex, which is in conforming to spectroscopic results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Sadegh Farhadian
- Department of Biology, Shahrekord University, Shahrekord, Iran.,Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Shahrekord University, Shahrekord, Iran.,Central Laboratory, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
18
|
Monti DM, Loreto D, Iacobucci I, Ferraro G, Pratesi A, D’Elia L, Monti M, Merlino A. Protein-Based Delivery Systems for Anticancer Metallodrugs: Structure and Biological Activity of the Oxaliplatin/β-Lactoglobulin Adduct. Pharmaceuticals (Basel) 2022; 15:ph15040425. [PMID: 35455422 PMCID: PMC9033069 DOI: 10.3390/ph15040425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
β-lactoglobulin is the major component of whey. Here, the adduct formed upon the reaction of the protein with oxaliplatin (OXA) has been prepared, structurally characterized by X-ray crystallography and electrospray ionization–mass spectrometry, and evaluated as a cytotoxic agent. The data demonstrate that OXA rapidly binds β-lactoglobulin via coordination with a Met7 side chain upon release of the oxalate ligand. The adduct is significantly more cytotoxic than the free drug and induces apoptosis in cancer cells. Overall, our results suggest that metallodrug/β-lactoglobulin adducts can be used as anticancer agents and that the protein can be used as a metallodrug delivery system.
Collapse
Affiliation(s)
- Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 21, 80126 Napoli, Italy; (D.M.M.); (D.L.); (I.I.); (G.F.); (L.D.); (M.M.)
| | - Domenico Loreto
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 21, 80126 Napoli, Italy; (D.M.M.); (D.L.); (I.I.); (G.F.); (L.D.); (M.M.)
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 21, 80126 Napoli, Italy; (D.M.M.); (D.L.); (I.I.); (G.F.); (L.D.); (M.M.)
- CEINGE Advanced Biotechnologies s.c.a.r.l., Via G. Salvatore 486, 80145 Napoli, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 21, 80126 Napoli, Italy; (D.M.M.); (D.L.); (I.I.); (G.F.); (L.D.); (M.M.)
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy;
| | - Luigi D’Elia
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 21, 80126 Napoli, Italy; (D.M.M.); (D.L.); (I.I.); (G.F.); (L.D.); (M.M.)
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 21, 80126 Napoli, Italy; (D.M.M.); (D.L.); (I.I.); (G.F.); (L.D.); (M.M.)
- CEINGE Advanced Biotechnologies s.c.a.r.l., Via G. Salvatore 486, 80145 Napoli, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 21, 80126 Napoli, Italy; (D.M.M.); (D.L.); (I.I.); (G.F.); (L.D.); (M.M.)
- Correspondence:
| |
Collapse
|
19
|
Chen J, Gong M, Huang Z, Wang F, Wang Y, Hu Z, Zeng Z, Wang Y. Alleviating Aspirin-Induced Gastric Injury by Binding Aspirin to β-Lactoglobulin. Drug Des Devel Ther 2022; 16:571-586. [PMID: 35256843 PMCID: PMC8898184 DOI: 10.2147/dddt.s351100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/20/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Gastric injury is a major issue for long-term administration of aspirin. In this work, we tried to explore the possibility of using BLG to alleviate aspirin-induced gastric injury, because of excellent abilities of BLG in loading drug molecules. Methods Various spectroscopic techniques and molecular docking methods were applied to investigate the interaction mechanism between BLG and aspirin. Animal experiments were performed to figure out the effects of taking aspirin-BLG on the stomach. Results Our results demonstrate that aspirin could bind with BLG to form stable aspirin-BLG complex (the binding constant Kb= 2.051 × 103 M−1). The formation process is endothermic (∆H>0) and the main acting force is hydrophobic force. Our data also show that the aspirin-BLG complex is formed with a higher affinity in simulated gastric fluid and could remain stable for several hours, which might arise from its special binding mode under acidic condition and the resistance of BLG to gastric digestion. Furthermore, animal models (rats with aspirin-induced gastric damage) were built. The results of animal experiments reveal that the oral administration of aspirin-BLG could cause less damage to gastric tissue, and it also hardly triggers obvious inflammatory responses. Conclusion This study would contribute to an in-depth understanding of the interaction mechanism between BLG and aspirin. It is reasonable to believe that using BLG to bind with aspirin would be a potential way to alleviate the aspirin-induced gastric injury.
Collapse
Affiliation(s)
- Jin Chen
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Min Gong
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Zhuo Huang
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Fang Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Yajing Wang
- The Affiliated Stomatological Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Zuquan Hu
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
| | - Zhu Zeng
- Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- Correspondence: Zhu Zeng, Key Laboratory of Biology and Medical Engineering/Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, People’s Republic of China, Email
| | - Yun Wang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, People’s Republic of China
- Yun Wang, Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, People’s Republic of China, Tel/Fax +86851-88174044, Email
| |
Collapse
|
20
|
Sahebi U, Gholami H, Ghalandari B, Badalkhani-khamseh F, Nikzamir A, Divsalar A. Evaluation of BLG ability for binding to 5-FU and Irinotecan simultaneously under acidic condition: A spectroscopic, molecular docking and molecular dynamic simulation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Azarakhsh F, Divsalar A, Saboury AA, Eidi A. Simultaneous delivery of oxali-palladium and iron nanoparticles by β-casein. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Investigation of kinetics and thermodynamics in the interaction process between two pyridine derived Schiff base complexes and catalase. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
|
24
|
Zhang Y, Lu Y, Yang Y, Li S, Wang C, Wang C, Zhang T. Comparison of non-covalent binding interactions between three whey proteins and chlorogenic acid: Spectroscopic analysis and molecular docking. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101035] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Wang Y, Gong M, Huang Z, Min H, Yu P, Tang F, Ye Y, Zhu S, Hu Z, Zeng Z, Chen J. Spectroscopic and Theoretical Investigation of β-Lactoglobulin Interactions with Hematoporphyrin and Protoporphyrin IX. ACS OMEGA 2021; 6:9680-9691. [PMID: 33869948 PMCID: PMC8047746 DOI: 10.1021/acsomega.1c00279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Hematoporphyrin (HP) and protoporphyrin IX (PPIX) are useful porphyrin photosensitizers with significant application values in photodynamic therapy. Currently, many strategies have been developed to improve their clinical performance, such as incorporating them with nanoparticle (NP) carriers. In this work, we studied the possibility of using β-lactoglobulin (BLG) as a potential NP carrier due to their hydrophobic affinity, pH sensitivity, and low cost of extraction and preservation. The interaction mechanisms of BLG with HP and PPIX were investigated using spectroscopic techniques and molecular docking methods. The molecular docking results agree well with the experimental results, which demonstrate that the formations of HP-BLG and PPIX-BLG complexes are endothermic processes and the main acting force is hydrophobic force. Furthermore, the opening-closure states of EF loop have a great influence on the HP-BLG complex formation, where the central hydrophobic cavity of β-barrel is available for HP binding at pH 7.4 but not available at pH 6.2. However, the formation of the PPIX-BLG complex is less dependent on the states of the EF loop, and the binding sites of PPIX are both located on the external surface of BLG under both pH 7.4 and 6.2 conditions. All of our results would provide new insight into the mechanisms of noncovalent interactions between BLG and HP/PPIX. It is believed that this work indicated the potential application values of BLG in designing pH-sensitive carriers for the delivery of HP and PPIX, as well as other poorly soluble drugs.
Collapse
Affiliation(s)
- Yun Wang
- School
of Basic Medical Sciences, Guizhou Medical
University, Guiyang 550025, P. R. China
- Key
Laboratory of Biology and Medical Engineering/Immune Cells and Antibody
Engineering Research Center of Guizhou Province, School of Biology
and Engineering, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Min Gong
- Key
Laboratory of Biology and Medical Engineering/Immune Cells and Antibody
Engineering Research Center of Guizhou Province, School of Biology
and Engineering, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Zhuo Huang
- Key
Laboratory of Biology and Medical Engineering/Immune Cells and Antibody
Engineering Research Center of Guizhou Province, School of Biology
and Engineering, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Hai Min
- Key
Laboratory of Biology and Medical Engineering/Immune Cells and Antibody
Engineering Research Center of Guizhou Province, School of Biology
and Engineering, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Peng Yu
- School
of Basic Medical Sciences, Guizhou Medical
University, Guiyang 550025, P. R. China
- Key
Laboratory of Biology and Medical Engineering/Immune Cells and Antibody
Engineering Research Center of Guizhou Province, School of Biology
and Engineering, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Fuzhou Tang
- Key
Laboratory of Biology and Medical Engineering/Immune Cells and Antibody
Engineering Research Center of Guizhou Province, School of Biology
and Engineering, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Yuannong Ye
- Key
Laboratory of Biology and Medical Engineering/Immune Cells and Antibody
Engineering Research Center of Guizhou Province, School of Biology
and Engineering, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Simian Zhu
- School
of Basic Medical Sciences, Guizhou Medical
University, Guiyang 550025, P. R. China
- Key
Laboratory of Biology and Medical Engineering/Immune Cells and Antibody
Engineering Research Center of Guizhou Province, School of Biology
and Engineering, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Zuquan Hu
- School
of Basic Medical Sciences, Guizhou Medical
University, Guiyang 550025, P. R. China
- Key
Laboratory of Biology and Medical Engineering/Immune Cells and Antibody
Engineering Research Center of Guizhou Province, School of Biology
and Engineering, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Zhu Zeng
- School
of Basic Medical Sciences, Guizhou Medical
University, Guiyang 550025, P. R. China
- Key
Laboratory of Biology and Medical Engineering/Immune Cells and Antibody
Engineering Research Center of Guizhou Province, School of Biology
and Engineering, Guizhou Medical University, Guiyang 550025, P. R. China
| | - Jin Chen
- School
of Basic Medical Sciences, Guizhou Medical
University, Guiyang 550025, P. R. China
- Key
Laboratory of Biology and Medical Engineering/Immune Cells and Antibody
Engineering Research Center of Guizhou Province, School of Biology
and Engineering, Guizhou Medical University, Guiyang 550025, P. R. China
| |
Collapse
|
26
|
Cow's Milk Processing-Friend or Foe in Food Allergy? Foods 2021; 10:foods10030572. [PMID: 33803451 PMCID: PMC8000412 DOI: 10.3390/foods10030572] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cow’s milk (CM) is an integral part of our daily diet starting in infancy and continuing throughout our lifetime. Its composition is rich in proteins with a high nutritional value, bioactive components, milk minerals including calcium, and a range of immunoactive substances. However, cow’s milk can also induce a range of immune-mediated diseases including non-IgE-mediated food allergies and IgE-mediated food allergies. Cow’s milk allergens have been identified and characterized and the most relevant ones can be assigned to both, the whey and casein fraction. For preservation a range of processing methods are applied to make cow’s milk and dairy products safe for consumers. However, these methods affect milk components and thus alter the overall immunogenic activity of cow’s milk. This review summarizes the current knowledge on cow’s milk allergens and immunoactive substances and the impact of the different processes up- or downregulating the immunogenicity of the respective proteins. It highlights the gaps of knowledge of the related disease mechanisms and the still unidentified beneficial immunomodulating compounds of cow’s milk.
Collapse
|
27
|
Waghmare MN, Qureshi TS, Krishna CM, Pansare K, Gadewal N, Hole A, Dongre PM. β-Lactoglobulin-gold nanoparticles interface and its interaction with some anticancer drugs - an approach for targeted drug delivery. J Biomol Struct Dyn 2021; 40:6193-6210. [PMID: 33509048 DOI: 10.1080/07391102.2021.1879270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The protein-nanoparticle interface plays a crucial role in drug binding and stability, in turn enhancing efficacy in targeted drug delivery. In the present study, whey protein β-lactoglobulin (BLG) is conjugated with gold nanoparticles (AuNP) and its interaction with curcumin (CUR) and gemcitabine (GEM) has been explored. Further, AuNP-BLG conjugate interactions with anticancer drugs were characterized using dynamic light scattering (DLS), zeta potential, UV-visible, Raman spectroscopy, fluorescence, circular dichroism along with molecular dynamics simulation. The cytotoxicity studies were performed using breast cancer cell lines (MCF-7). ∼8 µM of BLG resides on AuNP (∼29 nm) surface revealed by DLS. Raman scattering of AuNP-BLG conjugate showed orientation of the central calyx of BLG towards solvent. BLG fluorescence confirmed the interaction between AuNP-BLG conjugate with drugs and indicated strong binding and affinity (for CUR KD = 3.71 x 108 M -1, n = 1.83, and for GEM KD = 3.78 x 103 M -1, n = 0.94), enhanced in the presence of AuNP. CD and Raman analysis exhibited selective hydrophilic and hydrophobic conformations induced by drug binding. Computational studies on BLG-drug complexes revealed that the residues Pro38, Leu39 and Met107 are largely associated with CUR binding, while GEM interaction is via hydrophilic contacts which significantly matches with spectroscopic investigation. IC50 values were calculated for all components of this loading system on MCF-7. The possible mechanisms of interaction between AuNP-BLG with anticancer drugs has been explored at the molecular level. We believe that these conjugates could be considered in the targeted drug delivery studies for cancer research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manik N Waghmare
- Department of Biophysics, University of Mumbai, Mumbai, Maharashtra, India
| | - Tazeen S Qureshi
- Department of Biophysics, University of Mumbai, Mumbai, Maharashtra, India
| | - C Murali Krishna
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Kshama Pansare
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Nikhil Gadewal
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Arti Hole
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India
| | - Prabhakar M Dongre
- Department of Biophysics, University of Mumbai, Mumbai, Maharashtra, India
| |
Collapse
|
28
|
Insight into the binding of glycerol with myoglobin: Spectroscopic and MD simulation approach. Int J Biol Macromol 2020; 159:433-443. [PMID: 32360459 DOI: 10.1016/j.ijbiomac.2020.04.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022]
Abstract
Stability of proteins plays a significant role not only in their biological function but also in medical science and protein engineering. Since proteins are only stable in special conditions, maintaining their stability and function in biological and biotechnological applications may pose serious challenges. Osmolytes provide a general method of shielding proteins from the unfolding and aggregation caused by extreme stress on the environment. In such studies, the researchers used spectroscopic and simulation approaches to study the alterations of the myoglobin structure and stability in glycerol presence. Experimental results showed a stability improvement of the complex myoglobin-glycerol. After the addition of glycerol resulting in the initiation of hydrogen bonds and higher levels of hydrophobicity, the increase of the Tm was observed. The static mode quenching observed in this study. Van der Waals forces and hydrogen bindings had a decisive and significant role concerning the stability of protein which was consistent with the modeling results. Molecular dynamics simulation showed that the glycerol presence could enhance myoglobin stability. The consistency between the theoretical studies and experimental findings demonstrates that the method proposed in this study could provide a useful method for protein-ligand complex investigations.
Collapse
|
29
|
Shahraki S, Delarami HS, Saeidifar M, Nejat R. Catalytic activity and structural changes of catalase in the presence of Levothyroxine and Isoxsuprine hydrochloride. Int J Biol Macromol 2020; 152:126-136. [DOI: 10.1016/j.ijbiomac.2020.02.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 11/24/2022]
|
30
|
Buszewski B, Rodzik A, Railean-Plugaru V, Sprynskyy M, Pomastowski P. A study of zinc ions immobilization by β-lactoglobulin. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Mohammadgholi A, Leilabadi-Asl A, Divsalar A, Eslami-Moghadam M. Multi-spectroscopic studies of the interaction of new synthesized platin complex with human carrier protein of serum albumin. J Biomol Struct Dyn 2020; 39:1506-1511. [PMID: 32200700 DOI: 10.1080/07391102.2020.1745690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Previous reports have shown that protein-drug interaction helps to improve the pharmacokinetics of the drugs. Human serum albumin (HSA) is one of the basic components of blood plasma and it serves as a storage and carrier protein. In the present study, the interaction of a new synthesized Pt [iso]2 complex (cis - [Pt(NH2-Isopentylamine)2(Isopentylglycine)]NO3) with HSA was studied using the spectroscopic methods of fluorescence and circular dichroic (CD) at two different temperatures of 25 and 37 °C. Analysis of the quenching mechanism via Stern-Volmer curve, determination of HSA binding parameters (0.65 × 104 and 2.27 × 104) and standard Gibbs free energy (-25.8, and 21.77) at 25 and 37 °C, respectively, carried out using fluorescence quenching data. Data analysis showed that the static mechanism has the main role in fluorescence quenching. Also, the number of protein binding sites for complex indicated one binding site at two temperatures of 25 and 37 °C. The secondary structure of protein in the presence of different concentrations of Pt(II) complex did not show any significant alterations. Whereas, thermal stability of the HSA was reduced in the presence of complex. Also, thermal analysis obtained the values of ΔG°25 for HSA and HSA in presence of Pt [Iso]2 20, 13, respectively. According to the above results, we concluded that the new synthesized Pt complex can bind to the blood carrier protein of HSA and change the stability of it which can be considered in the design of new drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Azadeh Mohammadgholi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amineh Leilabadi-Asl
- Faculty of Biological Sciences, Department of Cell & Molecular Sciences, Kharazmi University, Tehran, Iran
| | - Adeleh Divsalar
- Faculty of Biological Sciences, Department of Cell & Molecular Sciences, Kharazmi University, Tehran, Iran
| | | |
Collapse
|
32
|
Gholami H, Divsalar A, Abbasalipourkabir R, Ziamajidi N, Saeidifar M. The simultaneous carrier ability of natural antioxidant of astaxanthin and chemotherapeutic drug of 5-fluorouracil by whey protein of β-lactoglobulin: spectroscopic and molecular docking study. J Biomol Struct Dyn 2020; 39:1004-1016. [DOI: 10.1080/07391102.2020.1733091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hamid Gholami
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Adeleh Divsalar
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Nasrin Ziamajidi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Saeidifar
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
33
|
Waghmare MN, Qureshi TS, Shaikh AN, Khade BS, Murali Krishna C, Dongre PM. Functionalized Alpha‐lactalbumin Conjugated with Gold Nanoparticle for Targeted Drug Delivery. ChemistrySelect 2020. [DOI: 10.1002/slct.201904190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Manik N. Waghmare
- Department of Biophysics University of Mumbai, Mumbai Maharashtra India
| | - Tazeen S. Qureshi
- Department of Biophysics University of Mumbai, Mumbai Maharashtra India
| | - Afrin N. Shaikh
- Department of Biophysics University of Mumbai, Mumbai Maharashtra India
| | - Bipin S. Khade
- Department of Biophysics University of Mumbai, Mumbai Maharashtra India
| | - C. Murali Krishna
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC) Navi Mumbai, Maharashtra India
| | | |
Collapse
|
34
|
Rizvi MA, Hussain Z, Ali F, Amin A, Mir SH, Rydzek G, Jagtap RM, Pardeshi SK, Qadri RA, Ariga K. Bioactive supra decorated thiazolidine-4-carboxylic acid derivatives attenuate cellular oxidative stress by enhancing catalase activity. Phys Chem Chem Phys 2020; 22:7942-7951. [DOI: 10.1039/d0cp00253d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioactive (2S,4R)-3-(tert-butoxycarbonyl)-2-(2-hydroxyphenyl)thiazolidine-4-carboxylic acid molecules restructure enzymes through complexation, allowing enhancing their activity to protect cells from oxidative stress.
Collapse
Affiliation(s)
| | - Zakir Hussain
- Department of Chemistry
- University of Kashmir
- Srinagar
- India
| | - Fasil Ali
- Department of Studies and Research in Biochemistry
- Mangalore University
- India
| | - Asif Amin
- Department of Biotechnology
- University of Kashmir
- Srinagar 190006
- India
| | - Sajjad Husain Mir
- Advanced Materials and Bio Engineering Research Centre (AMBER)
- Ireland
- Department of Chemistry
- Trinity College Dublin
- The University of Dublin
| | - Gaulthier Rydzek
- Institut Charles Gerhardt Montpellier
- UMR 5253
- CNRS
- ENSCM
- Univ. Montpellier
| | - Rohidas M. Jagtap
- Department of Chemistry
- Savitribai Phule Pune University
- Pune 411007
- India
| | | | - Raies A. Qadri
- Department of Biotechnology
- University of Kashmir
- Srinagar 190006
- India
| | - Katsuhiko Ariga
- World Premier International Center for Materials Nanoarchitectonics (MANA)
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
- Graduate School of Frontier Sciences
| |
Collapse
|
35
|
Sindhu A, Kumar S, Mondal D, Bahadur I, Venkatesu P. Protein packaging in ionic liquid mixtures: an ecofriendly approach towards the improved stability of β-lactoglobulin in cholinium-based mixed ionic liquids. Phys Chem Chem Phys 2020; 22:14811-14821. [DOI: 10.1039/d0cp02151b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present work demonstrates a pioneering approach for the packaging of β-LG with improved stability in the presence of aqueous solutions containing cholinium-based ionic liquid mixtures.
Collapse
Affiliation(s)
| | - Sumit Kumar
- Department of Chemistry
- University of Delhi
- Delhi
- India
| | - Dibyendu Mondal
- Centre for Nano & Material Science
- JAIN (deemed to be University)
- Jain Global Campus
- Bangalore-562112
- India
| | - Indra Bahadur
- Department of Chemistry, School of Physical and Chemical Sciences, Material Science Innovation & Modelling (MaSIM) Focus Area, Faculty of Natural and Agricultural Sciences
- North-West University (Mafikeng Campus)
- Private Bag X2046
- Mmabatho 2735
- South Africa
| | | |
Collapse
|
36
|
Balasco N, Ferraro G, Loreto D, Iacobucci I, Monti M, Merlino A. Cisplatin binding to β-lactoglobulin: a structural study. Dalton Trans 2020; 49:12450-12457. [PMID: 32852026 DOI: 10.1039/d0dt02582h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The first structural study on the interaction of β-lactoglobulin with the anticancer compound cisplatin is here reported by combining spectroscopic, crystallographic and mass spectrometry techniques.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Biostructures and Bioimaging
- CNR
- 80134 Napoli
- Italy
| | - Giarita Ferraro
- Department of Chemistry “Ugo Schiff”
- University of Florence
- Sesto Fiorentino
- Italy
| | - Domenico Loreto
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Maria Monti
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| | - Antonello Merlino
- Department of Chemical Sciences
- University of Naples Federico II
- Complesso Universitario di Monte Sant'Angelo
- Napoli
- Italy
| |
Collapse
|
37
|
Moghadam ME, Shokri N, Divsalar A, Shokoufi N, Rahiminezad A. Activity of Fluorescent Samarium Complex Containing 1,10 Phenanthroline Ligand against Human T-Cell Acute Lymphoblastic Leukaemia Cell Line. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1686403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Niloofar Shokri
- Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Adeleh Divsalar
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nader Shokoufi
- Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Arezo Rahiminezad
- Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| |
Collapse
|
38
|
Patel BK, Sepay N, Mahapatra A. Curious Results in the Prospective Binding Interactions of the Food Additive Tartrazine with β-Lactoglobulin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11579-11589. [PMID: 31385703 DOI: 10.1021/acs.langmuir.9b01242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The detailed characterizations of the binding interactions between food additive tartrazine (TZ) and β-lactoglobulin (β-LG) have been investigated through spectroscopic techniques combined with a molecular modeling study. A series of analyses, such as hyperchromic change in the UV-visible spectra, temperature-dependent quenching constant, time-resolved fluorescence, and Rayleigh scattering measurements, show that quenching of β-LG proceeds by a static quenching mechanism. TZ specifically binds with β-LG in a stoichiometry ratio of 1:1, and the observed binding constants (104, K) are 7.64, 9.13, 9.72, and 10.79 at 293, 298, 303, and 308 K, respectively. However, the curious results of binding constants (K) with temperature, encountered in the static quenching, have been well explained on the basis of Le Chatelier's principle. Thermodynamic data and pH-dependent studies along with the surface hydrophobicity binding displacement assay reveal that the durable mode of binding is chiefly entropy-driven, revealing noteworthy interactions of such ionic molecules with the hydrophobic part of β-LG. The modulation of protein conformation has been investigated through steady-state absorption spectroscopy, synchronous emission spectroscopy, circular dichroism, and dynamic light scattering studies. TZ acts as a potential inhibitor in fibrillogenesis. Furthermore, the molecular docking study offers accurate insights about the binding of TZ with β-LG, in consistence with the experimental results. This study would be helpful in pharmaceutical, food, and industrial engineering chemistry research.
Collapse
Affiliation(s)
- Biman Kumar Patel
- Department of Chemistry , Jadavpur University , Kolkata 700 032 , India
| | - Nayim Sepay
- Department of Chemistry , Jadavpur University , Kolkata 700 032 , India
| | | |
Collapse
|
39
|
Shahraki S, Samareh Delarami H, Saeidifar M. Catalase inhibition by two Schiff base derivatives. Kinetics, thermodynamic and molecular docking studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Wang R, Liu Y, Hu X, Pan J, Gong D, Zhang G. New insights into the binding mechanism between osthole and β-lactoglobulin: Spectroscopic, chemometrics and docking studies. Food Res Int 2019; 120:226-234. [DOI: 10.1016/j.foodres.2019.02.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022]
|
41
|
Maji A, Beg M, Das S, Sahoo NK, Jha PK, Islam MM, Hossain M. Binding interaction study on human serum albumin with bactericidal gold nanoparticles synthesized from a leaf extract ofMusa balbisiana: a multispectroscopic approach. LUMINESCENCE 2019; 34:563-575. [PMID: 31044511 DOI: 10.1002/bio.3639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/12/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Anukul Maji
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, India
| | - Maidul Beg
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, India
| | - Somnath Das
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, India
| | - Nandan Kumar Sahoo
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, India
| | - Pradeep K Jha
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Md Maidul Islam
- Department of Chemistry, Aliah University, West Bengal, India
| | - Maidul Hossain
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
42
|
Asgharzadeh S, Shareghi B, Farhadian S, Tirgir F. Effect of free L-cysteine on the structure and function of α-chymotrypsin. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.144] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Zhao Y, Sun N, Gao J, Wu D, Liu A. Antitumor activity of selenium modification of the bovine milk component β-Lg (Se-β-Lg) on H22 cells. Food Funct 2019; 10:3626-3636. [DOI: 10.1039/c8fo02520g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, the apoptosis induction and antitumor activity of a novel complex, seleno-β-lactoglobulin (Se-β-Lg), on H22 cells were explored.
Collapse
Affiliation(s)
- Yana Zhao
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Naxin Sun
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Jiayue Gao
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Di Wu
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| |
Collapse
|
44
|
Alaei L, Khodarahmi R, Sheikh-Hasani V, Sheibani N, Moosavi-Movahedi AA. Mechanistic investigation of sulfonamide ligands as human carbonic anhydrase II inhibitors. Int J Biol Macromol 2018; 120:1198-1207. [DOI: 10.1016/j.ijbiomac.2018.08.186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 11/16/2022]
|
45
|
Ghalandari B, Poursoleiman A, Fekri M, Komeili A, Divsalar A, Eslami Moghadam M, Kamrava SK, Saboury AA. Biological evaluations of newly-designed Pt(II) and Pd(II) complexes using spectroscopic and molecular docking approaches. J Biomol Struct Dyn 2018; 37:3422-3433. [PMID: 30146941 DOI: 10.1080/07391102.2018.1516164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To perform biological evaluations of newly-designed Pt(II) and Pd(II) complexes, the present study was conducted with targeted protein human serum albumin (HSA) and HCT116 cell line as model of human colorectal carcinoma. The binding of Pt(II) and Pd(II) complexes to HSA was analyzed using fluorescence spectroscopy and molecular docking. The thermal stability and alterations in the secondary structure of HSA in the presence of Pt(II) and Pd(II) complexes were investigated using the thermal denaturation method and circular dichroism (CD) spectroscopy. The cytotoxicity of the Pt(II) and Pd(II) complexes was studied against the HCT116 cell line using MTT assay. The binding analysis revealed that the fluorescence findings were well in agreement with docking results such that there is only one binding site for each complex on HSA. Binding constants of 8.7 × 103 M-1, 2.65 × 103 M-1, 0.3 × 103 M-1, and 4.4 × 103 M-1 were determined for Pd(II) and Pt(II) complexes (I-IV) at temperature of 25 °C, respectively. Also, binding constants of 1.9 × 103 M-1, 15.17 × 103 M-1, 1.9 × 103 M-1, and 13.1 × 103 M-1 were determined for Pd(II) and Pt(II) complexes (I-IV) at temperature of 37 °C, respectively. The results of CD and thermal denaturation showed that the molecular structure of HSA affected by interaction with Pt(II) and Pd(II) complexes is stable. Cytotoxicity studies represented the growth suppression effect of the Pt(II) and Pd(II) complexes toward the human colorectal carcinoma cell line. Therefore, the results suggest that the new designed Pt(II) and Pd(II) complexes are well promising candidates for use in cancer treatment, particularly for human colorectal cancer. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Behafarid Ghalandari
- a Department of Medical Nanotechnology , Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Atefeh Poursoleiman
- b Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | - Mina Fekri
- c Faculty of Biological Sciences, Department of Cell and Molecular Biology' Kharazmi University , Tehran , Iran
| | - Ali Komeili
- a Department of Medical Nanotechnology , Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University , Tehran , Iran
| | - Adeleh Divsalar
- c Faculty of Biological Sciences, Department of Cell and Molecular Biology' Kharazmi University , Tehran , Iran
| | | | - Seyed Kamran Kamrava
- e Clinical Nanomedicine Laboratory , ENT and Head and Neck Surgery Research Center, Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | - Ali Akbar Saboury
- b Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran.,f Center of Excellence in Biothermodynamics , University of Tehran , Tehran , Iran
| |
Collapse
|
46
|
Probing the interaction of two chemotherapeutic drugs of oxali-palladium and 5-fluorouracil simultaneously with milk carrier protein of β-lactoglobulin. Int J Biol Macromol 2018; 112:422-432. [DOI: 10.1016/j.ijbiomac.2018.01.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 02/06/2023]
|
47
|
Shams Abyaneh FS, Eslami Moghadam M, Divsalar A, Ajloo D, Hosaini Sadr M. Improving of Anticancer Activity and Solubility of Cisplatin by Methylglycine and Methyl Amine Ligands Against Human Breast Adenocarcinoma Cell Line. Appl Biochem Biotechnol 2018. [DOI: 10.1007/s12010-018-2715-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Multiple Spectroscopic, Docking and Cytotoxic Study of a Synthesized 2,2' Bipyridin Phenyl Isopentylglycin Pt(II) Nitrate Complex: Human Serum Albumin and Breast Cancer Cell Line of MDA-MB231 as Targets. J Fluoresc 2018; 28:551-559. [PMID: 29476398 DOI: 10.1007/s10895-018-2216-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
Abstract
In the present study, the biological activities of a new synthesized Pt(II)-complex, 2,2' bipyridinphenyl isopentylglycin Pt(II) nitrate was investigated via its interaction with the most important blood carrier protein of human serum albumin (HSA), using fluorescence and Far-UV circular dichroism (CD) spectroscopic techniques and also molecular docking. Moreover, cytotoxicity activity of the complex was studied against breast cancer cell line of MDA MB231 using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The Pt(II)-complex has a strong ability to quench the intrinsic fluorescence of HSA through a static quenching mechanism. According fluorescence quenching data, the binding parameters of the interaction were calculated and showed that hydrophobic interaction has an important role. The molecular docking results in coherent with fluorescence measurements illustrated that Pt(II) complex can bind to HSA at one position that located in the hydrophobic cavity of groove between drug site I and II. Also, experimental data on driving force in binding site was confirmed whereas theoretical results demonstrated Pt(II) complexinteract to HSA by hydrophobic interaction. Far-UV-CD results showed that Pt(II)-complex induced an increasing in the content of α-helical structure of the protein and stabilized it. Also, MTT assay represented growth inhibitory effect of the complex toward the breast cancer cell line.
Collapse
|
49
|
Hadian Rasanani S, Eslami Moghadam M, Soleimani E, Divsalar A, Ajloo D, Tarlani A, Amiri M. Anticancer activity of new imidazole derivative of 1R,2R-diaminocyclohexane palladium and platinum complexes as DNA fluorescent probes. J Biomol Struct Dyn 2017; 36:3058-3076. [DOI: 10.1080/07391102.2017.1385538] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sara Hadian Rasanani
- Inorganic Chemistry Research Laboratory, Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | | | - Esmaiel Soleimani
- Inorganic Chemistry Research Laboratory, Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Adeleh Divsalar
- Faculty of Biological Sciences, Department of Cell & Molecular Biology, Kharazmi University, Tehran, Iran
| | - Davood Ajloo
- School of Chemistry, Damghan University, Damghan, Iran
| | - Aliakbar Tarlani
- Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Majid Amiri
- School of Chemistry, Damghan University, Damghan, Iran
| |
Collapse
|
50
|
Shafaei Z, Abazari O, Divsalar A, Ghalandari B, Poursoleiman A, Saboury AA, Ahmad F. Effect of a Synthesized Amyl-Glycine1, 10-Phenanthroline Platinum Nitrate on Structure and Stability of Human Blood Carrier Protein, Albumin: Spectroscopic and Modeling Approaches. J Fluoresc 2017; 27:1829-1838. [DOI: 10.1007/s10895-017-2120-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 05/14/2017] [Indexed: 12/18/2022]
|