1
|
Jacomini D, Bussler L, da-Conceição Silva JL, Maller A, Kadowaki MK, Simão RDCG. Biopolishing of denim by the recombinant xylanase II of Caulobacter crescentus. Braz J Microbiol 2023; 54:1559-1564. [PMID: 37440124 PMCID: PMC10484820 DOI: 10.1007/s42770-023-01056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Denim, also known as jeans, is a fabric made up of braided cotton threads dyed indigo blue, whose fibers contain approximately 10% of non-cellulosic impurities that reduce its commercial value. Microbial enzymes can act in the cleaning and desizing processes of jeans, improving their color, softness, and covering capacity. The recombinant Xylanase II (XynA2) from the aquatic bacterial Caulobacter crescentus (C. crescentus), previously characterized in terms of its biochemical features, was applied to the biotreatment of jeans to clean and degum it. The biotreatment performance was evaluated in terms of tissue weight loss, amount of reducing sugars released and analysis of the images obtained by scanning electron microscopy (SEM). Biotreated tissues, at 12 and 24 h, showed a dry weight loss of 4.9 and 6.6%, respectively. The reducing sugars amount released after XynA2 action over the jean's fibers showed statistically significant values when compared with each other and with their respective controls. SEM images clearly shown that the fabric treated for 12 h presented a smooth and polished surface, while the fabric treated for 24 h showed the cotton fibers broken, displaying severe damage to the textile. The best treatment for the jeans was in the presence of 1 U mg-1 XynA2 at pH 8 and 60 °C during 12 h. In conclusion, XynA2 of C. crescentus was satisfactorily applied for the biopolishing of denim jeans being a more sustainable alternative to the use of chemical and abrasive processes to obtain the same effects.
Collapse
Affiliation(s)
- Débora Jacomini
- Centro de Ciências Médicas e Farmacêuticas - CCMF, Laboratório de Bioquímica Molecular - LaBioqMol, Universidade Estadual do Oeste do Paraná- UNIOESTE, Rua Universitária, 2069 -, Cascavel, PR, 85814-110, Brazil
| | - Larissa Bussler
- Centro de Ciências Exatas e Tecnológicas, Laboratório de Bioquímica Molecular- LaBioqMol, Universidade Estadual do Oeste do Paraná, Paraná, Cascavel, Brazil
| | - José Luis da-Conceição Silva
- Centro de Ciências Médicas e Farmacêuticas - CCMF, Laboratório de Bioquímica Molecular - LaBioqMol, Universidade Estadual do Oeste do Paraná- UNIOESTE, Rua Universitária, 2069 -, Cascavel, PR, 85814-110, Brazil
| | - Alexandre Maller
- Centro de Ciências Médicas e Farmacêuticas - CCMF, Laboratório de Bioquímica Molecular - LaBioqMol, Universidade Estadual do Oeste do Paraná- UNIOESTE, Rua Universitária, 2069 -, Cascavel, PR, 85814-110, Brazil
| | - Marina Kimiko Kadowaki
- Centro de Ciências Médicas e Farmacêuticas - CCMF, Laboratório de Bioquímica Molecular - LaBioqMol, Universidade Estadual do Oeste do Paraná- UNIOESTE, Rua Universitária, 2069 -, Cascavel, PR, 85814-110, Brazil
| | - Rita de Cássia Garcia Simão
- Centro de Ciências Médicas e Farmacêuticas - CCMF, Laboratório de Bioquímica Molecular - LaBioqMol, Universidade Estadual do Oeste do Paraná- UNIOESTE, Rua Universitária, 2069 -, Cascavel, PR, 85814-110, Brazil.
| |
Collapse
|
2
|
Zhu L, Liu LWC, Li Y, Pan K, Ouyang K, Song X, Xiong X, Qu M, Zhao X. Characteristics of recombinant xylanase from camel rumen metagenome and its effects on wheat bran hydrolysis. Int J Biol Macromol 2022; 220:1309-1317. [PMID: 36027987 DOI: 10.1016/j.ijbiomac.2022.08.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
Abstract
In the present study, we explored the effects of a novel xylanase from camel rumen metagenome (CrXyn) on wheat bran hydrolysis. CrXyn was heterologously expressed in Escherichia coli and showed maximum activity at 40 °C and pH 7.0. Furthermore, CrXyn exhibited preferential hydrolysis of xylan, but no obvious activity toward other substrates, including carboxymethylcellulose and Avicel. Using wheat straw xylan as a substrate, the Km and Vmax values for CrXyn were 5.98 g/L and 179.9 μmol xylose/min/mg protein, respectively. Mn2+ was a strong accelerator and significantly enhanced CrXyn activity. However, CrXyn activity was inhibited (~50 %) by 1 mM and 5 mM ethylenediaminetetraacetic acid (EDTA) and completely inactivated by 5 mM Cu2+. CrXyn tolerated 5 mM sodium dodecyl sulphate (SDS) and 15 % methanol, ethanol, and dimethyl sulfoxide (DMSO), with >50 % residual activity. CrXyn effectively hydrolyzed wheat bran, with xylobiose and xylotetraose accounting for 79.1 % of total sugars produced. A remarkable synergistic effect was found between CrXyn and protease, leading to an obvious increase in amino acids released from wheat bran compared with the control. CrXyn also enhanced the in vitro hydrolysis of wheat bran. Thus, CrXyn exhibits great potential as a feed additive to improve the utilization of wheat bran in monogastric animal production.
Collapse
Affiliation(s)
- Linli Zhu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Lei Wang Chanjuan Liu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Yanjiao Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Ke Pan
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Kehui Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiaozhen Song
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiaowen Xiong
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China.
| |
Collapse
|
3
|
Glekas PD, Kalantzi S, Dalios A, Hatzinikolaou DG, Mamma D. Biochemical and Thermodynamic Studies on a Novel Thermotolerant GH10 Xylanase from Bacillus safensis. Biomolecules 2022; 12:biom12060790. [PMID: 35740915 PMCID: PMC9221164 DOI: 10.3390/biom12060790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023] Open
Abstract
Xylanases have a broad range of applications in agro-industrial processes. In this study, we report on the discovery and characterization of a new thermotolerant GH10 xylanase from Bacillus safensis, designated as BsXyn10. The xylanase gene (bsxyn10) was cloned from Bacillus safensis and expressed in Escherichia coli. The reduced molecular mass of BsXyn10 was 48 kDa upon SDS-PAGE. Bsxyn10 was optimally active at pH 7.0 and 60 °C, stable over a broad range of pH (5.0–8.0), and also revealed tolerance toward different modulators (metal cations, EDTA). The enzyme was active toward various xylans with no activity on the glucose-based polysaccharides. KM, vmax, and kcat for oat spelt xylan hydrolysis were found to be 1.96 g·L−1, 58.6 μmole·min−1·(mg protein)−1, and 49 s−1, respectively. Thermodynamic parameters for oat spelt xylan hydrolysis at 60 °C were ΔS* = −61.9 J·mol−1·K−1, ΔH* = 37.0 kJ·mol−1 and ΔG* = 57.6 kJ·mol−1. BsXyn10 retained high levels of activity at temperatures up to 60 °C. The thermodynamic parameters (ΔH*D, ΔG*D, ΔS*D) for the thermal deactivation of BsXyn10 at a temperature range of 40–80 °C were: 192.5 ≤ ΔH*D ≤ 192.8 kJ·mol−1, 262.1 ≤ ΔS*D ≤ 265.8 J·mol−1·K−1, and 99.9 ≤ ΔG*D ≤ 109.6 kJ·mol−1. The BsXyn10-treated oat spelt xylan manifested the catalytic release of xylooligosaccharides of 2–6 DP, suggesting that BsXyn10 represents a promising candidate biocatalyst appropriate for several biotechnological applications.
Collapse
Affiliation(s)
- Panayiotis D. Glekas
- Enzyme and Microbial Biotechnology Unit, Department of Biology, Zografou Campus, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Styliani Kalantzi
- Biotechnology Laboratory, School of Chemical Engineering, Zografou Campus, National Technical University of Athens, 9 Iroon Polytechniou Str, 15700 Athens, Greece; (S.K.); (A.D.)
| | - Anargiros Dalios
- Biotechnology Laboratory, School of Chemical Engineering, Zografou Campus, National Technical University of Athens, 9 Iroon Polytechniou Str, 15700 Athens, Greece; (S.K.); (A.D.)
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, Zografou Campus, National and Kapodistrian University of Athens, 15784 Athens, Greece;
- Correspondence: (D.G.H.); (D.M.)
| | - Diomi Mamma
- Biotechnology Laboratory, School of Chemical Engineering, Zografou Campus, National Technical University of Athens, 9 Iroon Polytechniou Str, 15700 Athens, Greece; (S.K.); (A.D.)
- Correspondence: (D.G.H.); (D.M.)
| |
Collapse
|
4
|
Hu D, Zhao X. Characterization of a New Xylanase Found in the Rumen Metagenome and Its Effects on the Hydrolysis of Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6493-6502. [PMID: 35583133 DOI: 10.1021/acs.jafc.2c00827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wheat is the main ingredient of poultry diet, but its xylan has an adverse impact on poultry production. A novel xylanase from beef cattle rumen metagenome (RuXyn) and its effect on the wheat hydrolysis were investigated in the present study. The RuXyn coded for 377 amino acids and exhibited low identity (<40%) to previously reported proteins. The RuXyn was heterologously expressed in Escherichia coli and showed maximum activity at pH 6.0 and 40 °C. The activity of RuXyn could be increased by 79.8 and 36.0% in the presence of Ca2+ and Tween 20, respectively. The soluble xylan and insoluble xylan in wheat could be effectively degraded by RuXyn and xylooligosaccharides produced accounting for more than 80% of the products. This study demonstrates that RuXyn has substantial potential to improve the application of wheat in poultry production by degrading wheat xylan and the accompanying xylooligosaccharides produced.
Collapse
Affiliation(s)
- Die Hu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
5
|
Verma D. Extremophilic Prokaryotic Endoxylanases: Diversity, Applicability, and Molecular Insights. Front Microbiol 2021; 12:728475. [PMID: 34566933 PMCID: PMC8458939 DOI: 10.3389/fmicb.2021.728475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Extremophilic endoxylanases grabbed attention in recent years due to their applicability under harsh conditions of several industrial processes. Thermophilic, alkaliphilic, and acidophilic endoxylanases found their employability in bio-bleaching of paper pulp, bioconversion of lignocellulosic biomass into xylooligosaccharides, bioethanol production, and improving the nutritious value of bread and other bakery products. Xylanases obtained from extremophilic bacteria and archaea are considered better than fungal sources for several reasons. For example, enzymatic activity under broad pH and temperature range, low molecular weight, cellulase-free activity, and longer stability under extreme conditions of prokaryotic derived xylanases make them a good choice. In addition, a short life span, easy cultivation/harvesting methods, higher yield, and rapid DNA manipulations of bacterial and archaeal cells further reduces the overall cost of the product. This review focuses on the diversity of prokaryotic endoxylanases, their characteristics, and their functional attributes. Besides, the molecular mechanisms of their extreme behavior have also been presented here.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
6
|
Endo-xylanases from Cohnella sp. AR92 aimed at xylan and arabinoxylan conversion into value-added products. Appl Microbiol Biotechnol 2021; 105:6759-6778. [PMID: 34458936 DOI: 10.1007/s00253-021-11495-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/29/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The genus Cohnella belongs to a group of Gram-positive endospore-forming bacteria within the Paenibacillaceae family. Although most species were described as xylanolytic bacteria, the literature still lacks some key information regarding their repertoire of xylan-degrading enzymes. The whole genome sequence of an isolated xylan-degrading bacterium Cohnella sp. strain AR92 was found to contain five genes encoding putative endo-1,4-β-xylanases, of which four were cloned, expressed, and characterized to better understand the contribution of the individual endo-xylanases to the overall xylanolytic properties of strain AR92. Three of the enzymes, CoXyn10A, CoXyn10C, and CoXyn11A, were shown to be effective at hydrolyzing xylans-derived from agro-industrial, producing oligosaccharides with substrate conversion values of 32.5%, 24.7%, and 10.6%, respectively, using sugarcane bagasse glucuronoarabinoxylan and of 29.9%, 19.1%, and 8.0%, respectively, using wheat bran-derived arabinoxylan. The main reaction products from GH10 enzymes were xylobiose and xylotriose, whereas CoXyn11A produced mostly xylooligosaccharides (XOS) with 2 to 5 units of xylose, often substituted, resulting in potentially prebiotic arabinoxylooligosaccharides (AXOS). The endo-xylanases assay displayed operational features (temperature optima from 49.9 to 50.4 °C and pH optima from 6.01 to 6.31) fitting simultaneous xylan utilization. Homology modeling confirmed the typical folds of the GH10 and GH11 enzymes, substrate docking studies allowed the prediction of subsites (- 2 to + 1 in GH10 and - 3 to + 1 in GH11) and identification of residues involved in ligand interactions, supporting the experimental data. Overall, the Cohnella sp. AR92 endo-xylanases presented significant potential for enzymatic conversion of agro-industrial by-products into high-value products.Key points• Cohnella sp. AR92 genome encoded five potential endo-xylanases.• Cohnella sp. AR92 enzymes produced xylooligosaccharides from xylan, with high yields.• GH10 enzymes from Cohnella sp. AR92 are responsible for the production of X2 and X3 oligosaccharides.• GH11 from Cohnella sp. AR92 contributes to the overall xylan degradation by producing substituted oligosaccharides.
Collapse
|
7
|
Recombinant Technologies to Improve Ruminant Production Systems: The Past, Present and Future. Processes (Basel) 2020. [DOI: 10.3390/pr8121633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of recombinant technologies has been proposed as an alternative to improve livestock production systems for more than 25 years. However, its effects on animal health and performance have not been described. Thus, understanding the use of recombinant technology could help to improve public acceptance. The objective of this review is to describe the effects of recombinant technologies and proteins on the performance, health status, and rumen fermentation of meat and milk ruminants. The heterologous expression and purification of proteins mainly include eukaryotic and prokaryotic systems like Escherichia coli and Pichia pastoris. Recombinant hormones have been commercially available since 1992, their effects remarkably improving both the reproductive and productive performance of animals. More recently the use of recombinant antigens and immune cells have proven to be effective in increasing meat and milk production in ruminant production systems. Likewise, the use of recombinant vaccines could help to reduce drug resistance developed by parasites and improve animal health. Recombinant enzymes and probiotics could help to enhance rumen fermentation and animal efficiency. Likewise, the use of recombinant technologies has been extended to the food industry as a strategy to enhance the organoleptic properties of animal-food sources, reduce food waste and mitigate the environmental impact. Despite these promising results, many of these recombinant technologies are still highly experimental. Thus, the feasibility of these technologies should be carefully addressed before implementation. Alternatively, the use of transgenic animals and the development of genome editing technology has expanded the frontiers in science and research. However, their use and implementation depend on complex policies and regulations that are still under development.
Collapse
|
8
|
Jacomini D, Bussler L, Corrêa JM, Kadowaki MK, Maller A, da-Conceição Silva JL, Simão RDCG. Cloning, expression and characterization of C. crescentus xynA2 gene and application of Xylanase II in the deconstruction of plant biomass. Mol Biol Rep 2020; 47:4427-4438. [PMID: 32424521 DOI: 10.1007/s11033-020-05507-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/08/2020] [Indexed: 11/24/2022]
Abstract
Biotechnology offers innovative alternatives for industrial bioprocesses mainly because it uses enzymes that biodegrade the hemicellulose releasing fermentable sugars. Caulobacter crescentus (C. crescentus) has seven genes responsible for xylanolytic cleavage, 5 to β-xylosidases (EC 3.2.1.37) and 2 for endoxylanases, like xynA2 (CCNA_03137) that encodes Xylanase II (EC 3.2.1.8) of the glycohydrolases-GH10 group. The xynA2 gene was amplified by PCR, cloned into the pTrcHisA vector e efficiently overexpressed in E. coli providing a His-tag fusion protein. Recombinant xylanase (XynA2) was purified by affinity chromatography using a nickel sepharose column and exhibited a single 43 kDa band on SDS-PAGE gel. XynA2 showed an optimum alkaline pH (8) and stability at alkaline pH for 24 h. Although C. crescentus is mesophilic, XynA2 has optimum temperature of 60 °C and is thermo-resistance at 65 °C. XynA maintains 66% of the enzymatic activity at high temperatures (90 °C) without being denatured.The enzyme displayed a xylanolitic activity free of cellulase to xylan from beechwood and it was not inhibited in the presence of 50 μmol mL-1 of xylose. In addition, dithiothreitol (DTT) induced XynA2 activity, as it improved its kinetic parameters by lowering the KM (5.78 μmol mL-1) and increasing the KCat/KM ratio (1.63 U s-1). Finally, C. crescentus XynA2 efficiently hydrolyzed corn straw with high release of reducing sugars that can be applied in different branches of the industry.
Collapse
Affiliation(s)
- Débora Jacomini
- Laboratório de Bioquímica Molecular, Centro de Ciências Exatas e Tecnológicas, Universidade Estadual do Oeste do Paraná, Cascavel,, Paraná, 85814-110, Brazil
| | - Larissa Bussler
- Laboratório de Bioquímica Molecular, Centro de Ciências Exatas e Tecnológicas, Universidade Estadual do Oeste do Paraná, Cascavel,, Paraná, 85814-110, Brazil
| | - Juliana Moço Corrêa
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069, Cascavel, PR, 85814-110, Brazil
| | - Marina Kimiko Kadowaki
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069, Cascavel, PR, 85814-110, Brazil
| | - Alexandre Maller
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069, Cascavel, PR, 85814-110, Brazil
| | - José Luis da-Conceição Silva
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069, Cascavel, PR, 85814-110, Brazil
| | - Rita de Cássia Garcia Simão
- Laboratório de Bioquímica Molecular, Centro de Ciências Exatas e Tecnológicas, Universidade Estadual do Oeste do Paraná, Cascavel,, Paraná, 85814-110, Brazil. .,Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069, Cascavel, PR, 85814-110, Brazil.
| |
Collapse
|
9
|
Cloning, expression and characterization of a thermo-alkali-stable xylanase from Aspergillus oryzae LC1 in Escherichia coli BL21(DE3). Protein Expr Purif 2020; 168:105551. [DOI: 10.1016/j.pep.2019.105551] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/26/2019] [Accepted: 12/11/2019] [Indexed: 11/21/2022]
|
10
|
Yu H, Zhao S, Fan Y, Hu C, Lu W, Guo L. Cloning and heterologous expression of a novel halo/alkali-stable multi-domain xylanase (XylM18) from a marine bacterium Marinimicrobium sp. strain LS-A18. Appl Microbiol Biotechnol 2019; 103:8899-8909. [DOI: 10.1007/s00253-019-10140-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/06/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
|
11
|
Cloning, Purification, and Characterization of Recombinant Thermostable β-Xylanase Tnap_0700 from Thermotoga naphthophila. Appl Biochem Biotechnol 2019; 189:1274-1290. [DOI: 10.1007/s12010-019-03068-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/07/2019] [Indexed: 01/31/2023]
|
12
|
Gifre L, Arís A, Bach À, Garcia-Fruitós E. Trends in recombinant protein use in animal production. Microb Cell Fact 2017; 16:40. [PMID: 28259156 PMCID: PMC5336677 DOI: 10.1186/s12934-017-0654-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 02/26/2017] [Indexed: 02/06/2023] Open
Abstract
Recombinant technologies have made possible the production of a broad catalogue of proteins of interest, including those used for animal production. The most widely studied proteins for the animal sector are those with an important role in reproduction, feed efficiency, and health. Nowadays, mammalian cells and fungi are the preferred choice for recombinant production of hormones for reproductive purposes and fibrolytic enzymes to enhance animal performance, respectively. However, the development of low-cost products is a priority, particularly in livestock. The study of cell factories such as yeast and bacteria has notably increased in the last decades to make the new developed reproductive hormones and fibrolytic enzymes a real alternative to the marketed ones. Important efforts have also been invested to developing new recombinant strategies for prevention and therapy, including passive immunization and modulation of the immune system. This offers the possibility to reduce the use of antibiotics by controlling physiological processes and improve the efficacy of preventing infections. Thus, nowadays different recombinant fibrolytic enzymes, hormones, and therapeutic molecules with optimized properties have been successfully produced through cost-effective processes using microbial cell factories. However, despite the important achievements for reducing protein production expenses, alternative strategies to further reduce these costs are still required. In this context, it is necessary to make a giant leap towards the use of novel strategies, such as nanotechnology, that combined with recombinant technology would make recombinant molecules affordable for animal industry.
Collapse
Affiliation(s)
- Laia Gifre
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| | - Anna Arís
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| | - Àlex Bach
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| |
Collapse
|
13
|
Purification, characterization, and molecular cloning of the xylanase from Streptomyces thermovulgaris TISTR1948 and its application to xylooligosaccharide production. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Research Progress Concerning Fungal and Bacterial β-Xylosidases. Appl Biochem Biotechnol 2015; 178:766-95. [DOI: 10.1007/s12010-015-1908-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/22/2015] [Indexed: 01/08/2023]
|
15
|
Justo PI, Corrêa JM, Maller A, Kadowaki MK, da Conceição-Silva JL, Gandra RF, Simão RDCG. Analysis of the xynB5 gene encoding a multifunctional GH3-BglX β-glucosidase-β-xylosidase-α-arabinosidase member in Caulobacter crescentus. Antonie van Leeuwenhoek 2015; 108:993-1007. [PMID: 26264062 DOI: 10.1007/s10482-015-0552-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/01/2015] [Indexed: 01/11/2023]
Abstract
The Caulobacter crescentus (NA1000) xynB5 gene (CCNA_03149) encodes a predicted β-glucosidase-β-xylosidase enzyme that was amplified by polymerase chain reaction; the product was cloned into the blunt ends of the pJet1.2 plasmid. Analysis of the protein sequence indicated the presence of conserved glycosyl hydrolase 3 (GH3), β-glucosidase-related glycosidase (BglX) and fibronectin type III-like domains. After verifying its identity by DNA sequencing, the xynB5 gene was linked to an amino-terminal His-tag using the pTrcHisA vector. A recombinant protein (95 kDa) was successfully overexpressed from the xynB5 gene in E. coli Top 10 and purified using pre-packed nickel-Sepharose columns. The purified protein (BglX-V-Ara) demonstrated multifunctional activities in the presence of different substrates for β-glucosidase (pNPG: p-nitrophenyl-β-D-glucoside) β-xylosidase (pNPX: p-nitrophenyl-β-D-xyloside) and α-arabinosidase (pNPA: p-nitrophenyl-α-L-arabinosidase). BglX-V-Ara presented an optimal pH of 6 for all substrates and optimal temperature of 50 °C for β-glucosidase and α-L-arabinosidase and 60 °C for β-xylosidase. BglX-V-Ara predominantly presented β-glucosidase activity, with the highest affinity for its substrate and catalytic efficiency (Km 0.24 ± 0.0005 mM, Vmax 0.041 ± 0.002 µmol min(-1) mg(-1) and Kcat/Km 0.27 mM(-1) s(-1)), followed by β-xylosidase (Km 0.64 ± 0.032 mM, Vmax 0.055 ± 0.002 µmol min(-1) mg(-1) and Kcat/Km 0.14 mM(-1)s(-1)) and finally α-L-arabinosidase (Km 1.45 ± 0.05 mM, Vmax 0.091 ± 0.0004 µmol min(-1) mg(-1) and Kcat/Km 0.1 mM(-1) s(-1)). To date, this is the first report to demonstrate the characterization of a GH3-BglX family member in C. crescentus that may have applications in biotechnological processes (i.e., the simultaneous saccharification process) because the multifunctional enzyme could play an important role in bacterial hemicellulose degradation.
Collapse
Affiliation(s)
- Priscila Innocenti Justo
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069, Cascavel, PR, 85814-110, Brazil
| | | | | | | | | | | | | |
Collapse
|