1
|
Sun Y, Ko DH, Gao J, Fu K, Mao Y, He Y, Tian H. Engineering psychrophilic polymerase for nanopore long-read sequencing. Front Bioeng Biotechnol 2024; 12:1406722. [PMID: 39011153 PMCID: PMC11246872 DOI: 10.3389/fbioe.2024.1406722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/30/2024] [Indexed: 07/17/2024] Open
Abstract
Unveiling the potential application of psychrophilic polymerases as candidates for polymerase-nanopore long-read sequencing presents a departure from conventional choices such as thermophilic Bacillus stearothermophilus (Bst) renowned for its limitation in temperature and mesophilic Bacillus subtilis phage (phi29) polymerases for limitations in strong exonuclease activity and weak salt tolerance. Exploiting the PB-Bst fusion DNA polymerases from Psychrobacillus (PB) and Bacillus stearothermophilus (Bst), our structural and biochemical analysis reveal a remarkable enhancement in salt tolerance and a concurrent reduction in exonuclease activity, achieved through targeted substitution of a pivotal functional domain. The sulfolobus 7-kDa protein (Sso7d) emerges as a standout fusion domain, imparting significant improvements in PB-Bst processivity. Notably, this study elucidates additional functional sites regulating exonuclease activity (Asp43 and Glu45) and processivity using artificial nucleotides (Glu266, Gln283, Leu334, Glu335, Ser426, and Asp430). By disclosing the intricate dynamics in exonuclease activity, strand displacement, and artificial nucleotide-based processivity at specific functional sites, our findings not only advance the fundamental understanding of psychrophilic polymerases but also provide novel insights into polymerase engineering.
Collapse
Affiliation(s)
| | | | | | | | | | - Yun He
- Research Center of Molecular Diagnostics and Sequencing, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | - Hui Tian
- Research Center of Molecular Diagnostics and Sequencing, Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| |
Collapse
|
2
|
Abbas Q, Muhammad MA, Shakir NA, Aslam M, Rashid N. Molecular cloning and characterization of Pcal_0039, an ATP-/NAD +-independent DNA ligase from hyperthermophilic archaeon Pyrobaculum calidifontis. Int J Biol Macromol 2023; 253:126711. [PMID: 37673141 DOI: 10.1016/j.ijbiomac.2023.126711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
The genome sequence of hyperthermophilic archaeon Pyrobaculum calidifontis contains an open reading frame, Pcal_0039, which encodes a putative DNA ligase. Structural analysis disclosed the presence of signature sequences of ATP-dependent DNA ligases. We have heterologously expressed Pcal_0039 gene in Escherichia coli. The recombinant protein, majorly produced in soluble form, was purified and functionally characterized. Recombinant Pcal_0039 displayed nick-joining activity between 40 and 85 °C. Optimal activity was observed at 70 °C and pH 5.5. Nick-joining activity was retained even after heating for 1 h at 90 °C, indicating highly thermostable nature of Pcal_0039. The nick-joining activity, displayed by Pcal_0039, was metal ion dependent and Mg2+ was the most preferred. NaCl and KCl inhibited the nick-joining activity at or above 200 mmol/L. The activity catalyzed by recombinant Pcal_0039 was independent of addition of ATP or NAD+ or any other nucleotide cofactor. A mismatch adjacent to the nick, either at 3'- or 5'-end, abolished the nick-joining activity. These characteristics make Pcal_0039 a potential candidate for applications in DNA diagnostics. To the best of our knowledge, Pcal_0039 is the only DNA ligase, characterized from genus Pyrobaculum, which exhibits optimum nick-joining activity at pH below 6.0 and independent of any nucleotide cofactor.
Collapse
Affiliation(s)
- Qamar Abbas
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Majida Atta Muhammad
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Nisar Ahmad Shakir
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
3
|
Li J, Li Y, Li Y, Ma Y, Xu W, Wang J. An enhanced activity and thermostability of chimeric Bst DNA polymerase for isothermal amplification applications. Appl Microbiol Biotechnol 2023; 107:6527-6540. [PMID: 37672070 DOI: 10.1007/s00253-023-12751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Loop-mediated isothermal amplification (LAMP) is a widely used method for clinical diagnosis, customs quarantine, and disease prevention. However, the low catalytic activity of Bst DNA polymerase has made it challenging to develop rapid and reliable point-of-care testing. Herein, we developed a series of Bst DNA polymerase mutants with enhanced activity by predicting and analyzing the activity sites. Among these mutants, single mutants K431D and K431E showed a 1.93- and 2.03-fold increase in catalytic efficiency, respectively. We also created a chimeric protein by fusing the DNA-binding domain of DNA ligase from Pyrococcus abyssi (DBD), namely DBD-K431E, which enabled real-time LAMP at high temperatures up to 73 ℃ and remained active after heating at 70 ℃ for 8 h. The chimeric DBD-K431E remained active in the presence of 50 U/mL heparin, 10% ethanol, and up to 100 mM NaCl, and showed higher activity in 110 mM (NH4)2SO4, 110 mM KCl, and 12 mM MgSO4. Notably, it generated a fluorescence signal during the detection of Salmonella typhimurium at 2 × 102 ag/μL of genomic DNA and 1.24 CFU/mL of bacterial colony, outperforming the wild type and the commercial counterpart Bst 2.0. Our results suggest that the DBD-K431E variant could be a promising tool for general molecular biology research and clinical diagnostics. KEY POINTS: • Residue K431 is probably a key site of Bst DNA polymerase activity • The chimeric DBD-K431E is more inhibitor tolerant and thermostable than Bst-LF • The DBD-K431E variant can detect Salmonella typhimurium at 102 ag/μL or 100 CFU/mL.
Collapse
Affiliation(s)
- Jiaxuan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yanmei Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Shi J, Oger PM, Cao P, Zhang L. Thermostable DNA ligases from hyperthermophiles in biotechnology. Front Microbiol 2023; 14:1198784. [PMID: 37293226 PMCID: PMC10244674 DOI: 10.3389/fmicb.2023.1198784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
DNA ligase is an important enzyme ubiquitous in all three kingdoms of life that can ligate DNA strands, thus playing essential roles in DNA replication, repair and recombination in vivo. In vitro, DNA ligase is also used in biotechnological applications requiring in DNA manipulation, including molecular cloning, mutation detection, DNA assembly, DNA sequencing, and other aspects. Thermophilic and thermostable enzymes from hyperthermophiles that thrive in the high-temperature (above 80°C) environments have provided an important pool of useful enzymes as biotechnological reagents. Similar to other organisms, each hyperthermophile harbors at least one DNA ligase. In this review, we summarize recent progress on structural and biochemical properties of thermostable DNA ligases from hyperthermophiles, focusing on similarities and differences between DNA ligases from hyperthermophilic bacteria and archaea, and between these thermostable DNA ligases and non-thermostable homologs. Additionally, altered thermostable DNA ligases are discussed. Possessing improved fidelity or thermostability compared to the wild-type enzymes, they could be potential DNA ligases for biotechnology in the future. Importantly, we also describe current applications of thermostable DNA ligases from hyperthermophiles in biotechnology.
Collapse
Affiliation(s)
- Jingru Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Philippe M. Oger
- University of Lyon, INSA de Lyon, CNRS UMR, Villeurbanne, France
| | - Peng Cao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Likui Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Fusion of DNA-binding domain of Pyrococcus furiosus ligase with TaqStoffel DNA polymerase as a useful tool in PCR with difficult targets. Appl Microbiol Biotechnol 2017; 102:713-721. [PMID: 29103168 PMCID: PMC5756566 DOI: 10.1007/s00253-017-8560-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/28/2017] [Accepted: 09/27/2017] [Indexed: 01/16/2023]
Abstract
The DNA coding sequence of TaqStoffel polymerase was fused with the DNA-binding domain of Pyrococcus furiosus ligase. The resulting novel recombinant gene was cloned and expressed in E. coli. The recombinant enzyme was purified and its enzymatic features were studied. The fusion protein (PfuDBDlig-TaqS) was found to have enhanced processivity as a result of the conversion of the TaqDNA polymerase from a relatively low processive to a highly processive enzyme. The abovementioned processivity enhancement was about threefold as compared to the recombinant TaqStoffel DNA polymerase (TaqS), and the recombinant fusion protein was more thermostable. It had a half-life of 23 min at 99 °C as compared to 10 min for TaqS. The fusion protein also showed a significantly higher resistance to PCR inhibitors such as heparin or lactoferrin and the fusion polymerase-amplified GC-rich templates much more efficiently and was efficient even with 78% GC pairs.
Collapse
|
6
|
Oscorbin IP, Belousova EA, Boyarskikh UA, Zakabunin AI, Khrapov EA, Filipenko ML. Derivatives of Bst-like Gss-polymerase with improved processivity and inhibitor tolerance. Nucleic Acids Res 2017; 45:9595-9610. [PMID: 28934494 PMCID: PMC5766155 DOI: 10.1093/nar/gkx645] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 07/25/2017] [Indexed: 11/13/2022] Open
Abstract
At the moment, one of the actual trends in medical diagnostics is a development of methods for practical applications such as point-of-care testing, POCT or research tools, for example, whole genome amplification, WGA. All the techniques are based on using of specific DNA polymerases having strand displacement activity, high synthetic processivity, fidelity and, most significantly, tolerance to contaminants, appearing from analysed biological samples or collected under purification procedures. Here, we have designed a set of fusion enzymes based on catalytic domain of DNA polymerase I from Geobacillus sp. 777 with DNA-binding domain of DNA ligase Pyrococcus abyssi and Sto7d protein from Sulfolobus tokodaii, analogue of Sso7d. Designed chimeric DNA polymerases DBD-Gss, Sto-Gss and Gss-Sto exhibited the same level of thermal stability, thermal transferase activity and fidelity as native Gss; however, the processivity was increased up to 3-fold, leading to about 4-fold of DNA product in WGA which is much more exiting. The attachment of DNA-binding proteins enhanced the inhibitor tolerance of chimeric polymerases in loop-mediated isothermal amplification to several of the most common DNA sample contaminants—urea and whole blood, heparin, ethylenediaminetetraacetic acid, NaCl, ethanol. Therefore, chimeric Bst-like Gss-polymerase will be promising tool for both WGA and POCT due to increased processivity and inhibitor tolerance.
Collapse
Affiliation(s)
- Igor P Oscorbin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russian Federation.,Laboratory of genomic technologies, Novosibirsk State University, Pirogova street 2, Novosibirsk 630090, Russian Federation
| | - Ekaterina A Belousova
- Laboratory of Bioorganic chemistry of enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russian Federation
| | - Ulyana A Boyarskikh
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russian Federation
| | - Aleksandr I Zakabunin
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russian Federation
| | - Evgeny A Khrapov
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russian Federation
| | - Maksim L Filipenko
- Laboratory of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8, Novosibirsk 630090, Russian Federation.,Laboratory of genomic technologies, Novosibirsk State University, Pirogova street 2, Novosibirsk 630090, Russian Federation
| |
Collapse
|
7
|
Olszewski M, Śpibida M, Bilek M, Krawczyk B. Fusion of Taq DNA polymerase with single-stranded DNA binding-like protein of Nanoarchaeum equitans-Expression and characterization. PLoS One 2017; 12:e0184162. [PMID: 28863186 PMCID: PMC5581180 DOI: 10.1371/journal.pone.0184162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/19/2017] [Indexed: 11/25/2022] Open
Abstract
DNA polymerases are present in all organisms and are important enzymes that synthesise DNA molecules. They are used in various fields of science, predominantly as essential components for in vitro DNA syntheses, known as PCR. Modern diagnostics, molecular biology and genetic engineering need DNA polymerases which demonstrate improved performance. This study was aimed at obtaining a new NeqSSB-TaqS fusion DNA polymerase from the Taq DNA Stoffel domain and a single-stranded DNA binding-like protein of Nanoarchaeum equitans in order to significantly improve the properties of DNA polymerase. The DNA coding sequence of Taq Stoffel DNA polymerase and the nonspecific DNA-binding protein of Nanoarchaeum equitans (NeqSSB-like protein) were fused. A novel recombinant gene was obtained which was cloned into the pET-30 Ek/LIC vector and introduced into E. coli for expression. The recombinant enzyme was purified and its enzymatic properties including DNA polymerase activity, PCR amplification rate, thermostability, processivity and resistance to inhibitors, were tested. The yield of the target protein reached approximately 18 mg/l after 24 h of the IPTG induction. The specific activity of the polymerase was 2200 U/mg. The recombinant NeqSSB-TaqS exhibited a much higher extension rate (1000 bp template in 20 s), processivity (19 nt), thermostability (half-life 35 min at 95°C) and higher tolerance to PCR inhibitors (0.3–1.25% of whole blood, 0.84–13.5 μg of lactoferrin and 4.7–150 ng of heparin) than Taq Stoffel DNA polymerase. Furthermore, our studies show that NeqSSB-TaqS DNA polymerase has a high level of flexibility in relation to Mg2+ ions (from 1 to 5 mM) and KCl or (NH4)2SO4 salts (more than 60 mM and 40 mM, respectively). Using NeqSSB-TaqS DNA polymerase instead of the Taq DNA polymerase could be a better choice in many PCR applications.
Collapse
Affiliation(s)
- Marcin Olszewski
- Gdańsk University of Technology, Department of Molecular Biotechnology and Microbiology, ul. G. Narutowicza 11/12, Gdańsk, Poland
| | - Marta Śpibida
- Gdańsk University of Technology, Department of Molecular Biotechnology and Microbiology, ul. G. Narutowicza 11/12, Gdańsk, Poland
| | - Maciej Bilek
- Department of Food and Agriculture Production Engineering, University of Rzeszów, ul. Zelwerowicza 4, Rzeszów, Poland
| | - Beata Krawczyk
- Gdańsk University of Technology, Department of Molecular Biotechnology and Microbiology, ul. G. Narutowicza 11/12, Gdańsk, Poland
| |
Collapse
|