1
|
Nazarian Z, Arab SS. Discovery of carboxylesterases via metagenomics: Putative enzymes that contribute to chemical kinetic resolution. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
2
|
Liu Y, Gan L, Feng P, Huang L, Chen L, Li S, Chen H. An artificial self-assembling peptide with carboxylesterase activity and substrate specificity restricted to short-chain acid p-nitrophenyl esters. Front Chem 2022; 10:996641. [PMID: 36199662 PMCID: PMC9527324 DOI: 10.3389/fchem.2022.996641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Natural enzymes possess remarkable catalytic activity and high substrate specificity. Many efforts have been dedicated to construct artificial enzymes with high catalytic activity. However, how to mimic the exquisite substrate specificity of a natural enzyme remains challenging because of the complexity of the enzyme structure. Here, we report artificial carboxylesterases that are specific for short chain fatty acids and were constructed via peptide self-assembly. These artificial systems have esterase-like activity rather than lipase-like activity towards p-nitrophenyl esters. The designer peptides self-assembled into nanofibers with strong β-sheet character. The extending histidine units and the hydrophobic edge of the fibrillar structure collectively form the active center of the artificial esterase. These artificial esterases show substrate specificity for short-chain acids esters. Moreover, 1-isopropoxy-4-nitrobenzene could function as a competitive inhibitor of hydrolysis of p-nitrophenyl acetate for an artificial esterase.
Collapse
Affiliation(s)
- Yanfei Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Yanfei Liu,
| | - Lili Gan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Peili Feng
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Lei Huang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Luoying Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Shuhua Li
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Hui Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Collaborative Innovation Center of Chinese Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Dong L, Qi S, Jia J, Zhang Y, Hu Y. Enantioselective resolution of (±)-1-phenylethyl acetate using the immobilized extracellular proteases from deep-sea Bacillus sp. DL-1. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1897579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lu Dong
- Guangdong Key Laboratory of Marine Materia Medical, South China Sea Institute of Oceanology, Chinese Academy of Sciences, CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangzhou, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| | - Shujuan Qi
- The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Jianwei Jia
- International College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yun Zhang
- Guangdong Key Laboratory of Marine Materia Medical, South China Sea Institute of Oceanology, Chinese Academy of Sciences, CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangzhou, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
- Equipment Public Service Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Yunfeng Hu
- Guangdong Key Laboratory of Marine Materia Medical, South China Sea Institute of Oceanology, Chinese Academy of Sciences, CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangzhou, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| |
Collapse
|
4
|
Barzkar N, Sohail M, Tamadoni Jahromi S, Gozari M, Poormozaffar S, Nahavandi R, Hafezieh M. Marine Bacterial Esterases: Emerging Biocatalysts for Industrial Applications. Appl Biochem Biotechnol 2021; 193:1187-1214. [PMID: 33411134 DOI: 10.1007/s12010-020-03483-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022]
Abstract
The marine ecosystem has been known to be a significant source of novel enzymes. Esterase enzymes (EC 3.1.1.1) represent a diverse group of hydrolases that catalyze the cleavage and formation of ester bonds. Although esterases are widely distributed among marine organisms, only microbial esterases are of paramount industrial importance. This article discusses the importance of marine microbial esterases, their biochemical and kinetic properties, and their stability under extreme conditions. Since culture-dependent techniques provide limited insights into microbial diversity of the marine ecosystem, therefore, genomics and metagenomics approaches have widely been adopted in search of novel esterases. Additionally, the article also explains industrial applications of marine bacterial esterases particularly for the synthesis of optically pure substances, the preparation of enantiomerically pure drugs, the degradation of human-made plastics and organophosphorus compounds, degradation of the lipophilic components of the ink, and production of short-chain flavor esters.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, 7931674576, Iran.
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan
| | - Saeid Tamadoni Jahromi
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | - Mohsen Gozari
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research Education and Extension Organization (AREEO), Bandar Abbas, Iran
| | - Sajjad Poormozaffar
- Persian Gulf Mollusks Research Station, Persian Gulf and Oman Sea Ecology Research Center, Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Sciences Research Institute, Bandar-e-Lengeh, Iran
| | - Reza Nahavandi
- Animal Science Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mahmoud Hafezieh
- Iranian Fisheries Science Research Institute (ASRI), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
5
|
Wang Y, Xu Y, Zhang Y, Sun A, Hu Y. Utilization of One Novel Microbial Esterase WDEst9 in the Kinetic Resolution of (S)-Methyl 2-chloropropionate and (S)-Ethyl 2-chloropropionate. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Birolli WG, Lima RN, Porto ALM. Applications of Marine-Derived Microorganisms and Their Enzymes in Biocatalysis and Biotransformation, the Underexplored Potentials. Front Microbiol 2019; 10:1453. [PMID: 31481935 PMCID: PMC6710449 DOI: 10.3389/fmicb.2019.01453] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Biodiversity has been explored in the search for novel enzymes, including forests, savannas, tundras, deserts, and finally the sea. Marine microorganisms and their enzymes are capable of being active in high-salt concentration, large range of temperature, and high incidence of light and pressure, constituting an important source of unique biocatalysts. This review presents studies employing whole-cell processes of marine bacteria and fungi, aiming for new catalysts for different reactions in organic synthesis, such as reduction, oxidation, hydroxylation, hydrolysis, elimination, and conjugation. Genomics and protein engineering studies were also approached, and reactions employing isolated enzymes from different classes (oxidoreductases, hydrolases, lyases, and ligases) were described and summarized. Future biotechnological studies and process development should focus on molecular biology for the obtention of enzymes with interesting, fascinating and enhanced properties, starting from the exploration of microorganisms from the marine environment. This review approaches the literature about the use of marine-derived bacteria, fungi, and their enzymes for biocatalytic reactions of organic compounds, promoting a discussion about the possibilities of these microorganisms in the synthesis of different substances.
Collapse
Affiliation(s)
- Willian G Birolli
- Laboratory of Organic Chemistry and Biocatalysis, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil.,Center of Exact Sciences and Technology, Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Rafaely N Lima
- Laboratory of Organic Chemistry and Biocatalysis, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil.,Center of Exact Sciences and Technology, Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - André L M Porto
- Laboratory of Organic Chemistry and Biocatalysis, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
7
|
Identification of a novel esterase from the thermophilic bacterium Geobacillus thermodenitrificans NG80-2. Extremophiles 2019; 23:407-419. [DOI: 10.1007/s00792-019-01093-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022]
|
8
|
Wang Y, Xu S, Li R, Sun A, Zhang Y, Sai K, Hu Y. Characterization of one novel microbial esterase WDEst9 and its use to make l-methyl lactate. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1526926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yilong Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Shan Xu
- Department of Biotechnology, Jinan University, Guangzhou, China
| | - Renqiang Li
- Department of Biotechnology, Jinan University, Guangzhou, China
| | - Aijun Sun
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yun Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Ke Sai
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Yunfeng Hu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
9
|
Jayanath G, Mohandas SP, Kachiprath B, Solomon S, Sajeevan T, Bright Singh I, Philip R. A novel solvent tolerant esterase of GDSGG motif subfamily from solar saltern through metagenomic approach: Recombinant expression and characterization. Int J Biol Macromol 2018; 119:393-401. [DOI: 10.1016/j.ijbiomac.2018.06.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 11/15/2022]
|
10
|
Huang J, Xu Y, Zhang Y, Sun A, Hu Y. Utilization of one novel deep-sea microbial protease sin3406-1 in the preparation of ethyl (S)-3-hydroxybutyrate through kinetic resolution. World J Microbiol Biotechnol 2018; 34:124. [PMID: 30083971 DOI: 10.1007/s11274-018-2513-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
One novel protease sin3406-1 was identified from Streptomyces niveus SCSIO 3406, which was isolated from the deep sea of the South China Sea, and heterologously expressed in E. coli BL21(DE3). Protease sin3406-1 was further used as a green biocatalyst in the kinetic resolution of racemic ethyl-3-hydroxybutyrate. After careful process optimization, chiral product ethyl (S)-3-hydroxybutyrate was generated with an enantiomeric excess of over 99% and a conversion rate of up to 50% through direct hydrolysis of inexpensive racemic ethyl-3-hydroxybutyrate catalyzed by sin3406-1. Interestingly, protease sin3406-1 exhibited the same enantio-preference as that of esterase PHE21 during the asymmetric hydrolysis of the ester bonds of racemic ethyl-3-hydroxybutyrate. Through mutation studies and molecular docking, we also demonstrated that the four residues close to the catalytic center, S85, A86, Q87 and Y254, played key roles in both the hydrolytic activity and the enantioselectivity of protease sin3406-1, possibly through forming hydrogen bonds between the enzyme and the substrates. Deep-sea microbial proteases represented by sin3406-1 are new contributions to the biocatalyst library for the preparation of valuable chiral drug intermediates and chemicals through enzymatic kinetic resolution.
Collapse
Affiliation(s)
- Jinlong Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,College of Life Science, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Yongkai Xu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China
| | - Yun Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Aijun Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.,Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China
| | - Yunfeng Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China. .,Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China. .,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, People's Republic of China.
| |
Collapse
|