1
|
Siziya IN, Lim HJ, Jung DH, Baek S, Lee S, Seo MJ. Enhancement of iminosugar production, 1-deoxynojirimycin and 1-deoxymannojirimycin, in recombinant Corynebacterium glutamicum. Food Sci Biotechnol 2025; 34:2225-2235. [PMID: 40351729 PMCID: PMC12064549 DOI: 10.1007/s10068-025-01834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 01/26/2025] [Indexed: 05/14/2025] Open
Abstract
The iminosugars 1-deoxynojirimycin (1-DNJ) and 1-deoxymannojirimycin (1-DMJ) were produced by recombinant Corynebacterium glutamicum (CgTYB) bearing the 1-DNJ-producing GabT1-Yktc1-GutB1 (TYB) gene cluster from Bacillus velezensis MBLB0692. The enhanced iminosugar biosynthesis in CgTYB cultures increased both α-mannosidase inhibition (AMI) and α-glucosidase inhibition (AGI) activity. Individual cultures harboring GabT1, Yktc1, and GutB1 genes were found to be able to produce both 1-DNJ and 1-DMJ in mixed cultures of one pot analysis. This suggests that the genes necessary for epimerization and reduction are intrinsic to the cells rather than close to the 1-DNJ-producing cluster. Glucose was the preferred carbon source and a provision of 10 g/L glucose increased AGI and AMI to 69.8% and 70.1%, respectively. The 1 mM IPTG produced 55.0% AGI and 72.1% AMI, and 20% ethanolic permeabilization produced 62.8% AGI and 74.2% AMI. Batch fermentation increased iminosugar yields from 18.7 to 229.9 mg/L 1-DNJ, and 41.8 to 63.7 mg/mL 1-DMJ. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-025-01834-x.
Collapse
Affiliation(s)
- Inonge Noni Siziya
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- Research Center for Bio Materials & Process Development, Incheon National University, Incheon, 22012 Republic of Korea
- Division of Food and Nutrition, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Hyo Jung Lim
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| | - Dong-Hyun Jung
- Division of Food and Nutrition, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Suhyeon Baek
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Republic of Korea
| | - Sanggil Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, 48513 Republic of Korea
- Department of Food Science and Nutrition, College of Fisheries Science, Pukyong National University, Busan, 48513 Republic of Korea
| | - Myung-Ji Seo
- Division of Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
- Research Center for Bio Materials & Process Development, Incheon National University, Incheon, 22012 Republic of Korea
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012 Republic of Korea
| |
Collapse
|
2
|
Ye C, Zhao W, Liu D, Yang R, Cui Z, Zou D, Li D, Wei X, Xiong H, Niu C. Screening, identification, engineering, and characterization of Bacillus-derived α-amylase for effective tobacco starch degradation. Int J Biol Macromol 2024; 282:137364. [PMID: 39515712 DOI: 10.1016/j.ijbiomac.2024.137364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/19/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
In this study, two high-performing α-amylase-producing strains, CK3-5 and A8-1 were successfully isolated and characterized, which were taxonomically confirmed as Bacillus velezensis through whole-genome sequencing and bioinformatics. Bioinformatic sequence analysis and molecular docking revealed the catalytic triad (Asp173-Glu208-Asp274) essential for α-amylase function. Through metabolic engineering, the recombinant strain BAX-5/PT17amy(A8-1)SP002 was developed, which exhibited the highest α-amylase activity of 1440 U/mL upon fermentation optimization, marking a 9.2-fold enhancement over the wild-type strain A8-1, and it successfully degraded 6 % of the starch in the tobacco leaves within 48 h, while the content of 13 harmful substances, including acetamide, pyridine, and acetonitrile, was reduced by 8.6 % to 25.2 %. This study reveals a novel α-amylase gene from B. velezensis and establishes an efficient expression system in B. amyloliquefaciens, offering valuable insights for industrial α-amylase production.
Collapse
Affiliation(s)
- Changwen Ye
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Wanxia Zhao
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Dandan Liu
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Rongchao Yang
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Zhongyue Cui
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Dian Zou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dong Li
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hanguo Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Chenqi Niu
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China.
| |
Collapse
|
3
|
She M, Zhou H, Dong W, Xu Y, Gao L, Gao J, Yang Y, Yang Z, Cai D, Chen S. Modular metabolic engineering of Bacillus amyloliquefaciens for high-level production of green biosurfactant iturin A. Appl Microbiol Biotechnol 2024; 108:311. [PMID: 38676716 PMCID: PMC11055739 DOI: 10.1007/s00253-024-13083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 04/29/2024]
Abstract
As a kind of biosurfactants, iturin A has attracted people's wide attentions due to their features of biodegradability, environmentally friendly, etc.; however, high production cost limited its extensive application, and the aim of this research wants to improve iturin A production in Bacillus amyloliquefaciens. Firstly, dual promoter was applied to strengthen iturin A synthetase expression, and its yield was increased to 1.25 g/L. Subsequently, original 5'-UTRs of downstream genes (ituA, ituB, and ituC) in iturin A synthetase cluster were optimized, which significantly increased mRNA secondary stability, and iturin A yield produced by resultant strain HZ-T3 reached 2.32 g/L. Secondly, synthetic pathway of α-glucosidase inhibitor 1-deoxynojirimycin was blocked to improve substrate corn starch utilization, and iturin A yield was increased by 34.91% to 3.13 g/L. Thirdly, efficient precursor (fatty acids, Ser, and Pro) supplies were proven as the critical role in iturin A synthesis, and 5.52 g/L iturin A was attained by resultant strain, through overexpressing yngH, serC, and introducing ocD. Meanwhile, genes responsible for poly-γ-glutamic acid, extracellular polysaccharide, and surfactin syntheses were deleted, which led to a 30.98% increase of iturin A yield. Finally, lipopeptide transporters were screened, and iturin A yield was increased by 17.98% in SwrC overexpression strain, reached 8.53 g/L, which is the highest yield of iturin A ever reported. This study laid a foundation for industrial production and application development of iturin A, and provided the guidance of metabolic engineering breeding for efficient production of other metabolites synthesized by non-ribosomal peptide synthetase. KEY POINTS: • Optimizing 5'-UTR is an effective tactics to regulate synthetase cluster expression. • Blocking 1-DNJ synthesis benefited corn starch utilization and iturin A production. • The iturin A yield attained in this work was the highest yield reported so far.
Collapse
Affiliation(s)
- Menglin She
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Huijuan Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Wanrong Dong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Yuxiang Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Lin Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, People's Republic of China
| | - Jiaming Gao
- Hubei Corporation of China National Tobacco Corporation, Wuhan, 430000, People's Republic of China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Zhifan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Ren F, Ji N, Zhu Y. Research Progress of α-Glucosidase Inhibitors Produced by Microorganisms and Their Applications. Foods 2023; 12:3344. [PMID: 37761053 PMCID: PMC10529981 DOI: 10.3390/foods12183344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Based on the easy cultivation of microorganisms and their short cycle time, research on α-glucosidase inhibitors (α-GIs) of microbial origin is receiving extensive attention. Raw materials used in food production, such as cereals, dairy products, fruits, and vegetables, contain various bioactive components, like flavonoids, polyphenols, and alkaloids. Fermentation with specific bacterial strains enhances the nutritional value of these raw materials and enables the creation of hypoglycemic products rich in diverse active ingredients. Additionally, conventional food processing often results in significant byproduct generation, causing resource wastage and environmental issues. However, using bacterial strains to ferment these byproducts into α-GIs presents an innovative solution. This review describes the microbial-derived α-GIs that have been identified. Moreover, the production of α-GIs using industrial food raw materials and processing byproducts as a medium in fermentation is summarized. It is worth analyzing the selection of strains and raw materials, the separation and identification of key compounds, and fermentation broth research methods. Notably, the innovative ideas in this field are described as well. This review will provide theoretical guidance for the development of microbial-derived hypoglycemic foods.
Collapse
Affiliation(s)
- Fei Ren
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China; (F.R.); (N.J.)
| | - Nairu Ji
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China; (F.R.); (N.J.)
| | - Yunping Zhu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China; (F.R.); (N.J.)
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Li X, Zhang M, Lu Y, Wu N, Chen J, Ji Z, Zhan Y, Ma X, Chen J, Cai D, Chen S. Metabolic engineering of Bacillus amyloliquefaciens for efficient production of α-glucosidase inhibitor1-deoxynojirimycin. Synth Syst Biotechnol 2023; 8:378-385. [PMID: 37692204 PMCID: PMC10485785 DOI: 10.1016/j.synbio.2023.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 09/12/2023] Open
Abstract
Owing to the feature of strong α-glucosidase inhibitory activity, 1-deoxynojirimycin (1-DNJ) has broad application prospects in areas of functional food, biomedicine, etc., and this research wants to construct an efficient strain for 1-DNJ production, basing on Bacillus amyloliquefaciens HZ-12. Firstly, using the temperature-sensitive shuttle plasmid T2 (2)-Ori, gene ptsG in phosphotransferase system (PTS) was weakened by homologous recombination, and non-PTS pathway was strengthened by deleting its repressor gene iolR, and 1-DNJ yield of resultant strain HZ-S2 was increased by 4.27-fold, reached 110.72 mg/L. Then, to increase precursor fructose-6-phosphate (F-6-P) supply, phosphofructokinase was weaken, fructose phosphatase GlpX and 6-phosphate glucose isomerase Pgi were strengthened by promoter replacement, moreover, regulator gene nanR was deleted, 1-DNJ yield was further increased to 267.37 mg/L by 2.41-fold. Subsequently, promoter of 1-DNJ synthetase cluster was optimized, as well as 5'-UTRs of downstream genes in synthetase cluster, and 1-DNJ produced by the final strain reached 478.62 mg/L. Last but not the least, 1-DNJ yield of 1632.50 mg/L was attained in 3 L fermenter, which was the highest yield of 1-DNJ reported to date. Taken together, our results demonstrated that metabolic engineering was an effective strategy for 1-DNJ synthesis, this research laid a foundation for industrialization of functional food and drugs based on 1-DNJ.
Collapse
Affiliation(s)
- Xujie Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Meng Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yu Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ningyang Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian'gang Chen
- Wuhan Jun'an Biotechnology Co., Ltd., Wuhan, 430070, China
| | - Zhixia Ji
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Junyong Chen
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated to Jinan University), Zhuhai, 519000, China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
6
|
Zou D, Ye C, Min Y, Li L, Ruan L, Yang Z, Wei X. Production of a novel lycopene-rich soybean food by fermentation with Bacillus amyloliquefaciens. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Todorov SD, Ivanova IV, Popov I, Weeks R, Chikindas ML. Bacillus spore-forming probiotics: benefits with concerns? Crit Rev Microbiol 2021; 48:513-530. [PMID: 34620036 DOI: 10.1080/1040841x.2021.1983517] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Representatives of the genus Bacillus are multifunctional microorganisms with a broad range of applications in both traditional fermentation and modern biotechnological processes. Bacillus spp. has several beneficial properties. They serve as starter cultures for various traditional fermented foods and are important biotechnological producers of enzymes, antibiotics, and bioactive peptides. They are also used as probiotics for humans, in veterinary medicine, and as feed additives for animals of agricultural importance. The beneficial effects of bacilli are well-reported and broadly acknowledged. However, with a better understanding of their positive role, many questions have been raised regarding their safety and the relevance of spore formation in the practical application of this group of microorganisms. What is the role of Bacillus spp. in the human microbial consortium? When and why did they start colonizing the gastrointestinal tract (GIT) of humans and other animals? Can spore-forming probiotics be considered as truly beneficial organisms, or should they still be approached with caution and regarded as "benefits with concerns"? In this review, we not only hope to answer the above questions but to expand the scope of the conversation surrounding bacilli probiotics.
Collapse
Affiliation(s)
| | - Iskra Vitanova Ivanova
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Michael Leonidas Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia.,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
8
|
Lu Y, Cheng X, Deng H, Chen S, Ji Z. Improvement of 1-deoxynojirimycin production of Bacillus amyloliquefaciens by gene overexpression and medium optimization. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Gopikrishna T, Suresh Kumar HK, Perumal K, Elangovan E. Impact of Bacillus in fermented soybean foods on human health. ANN MICROBIOL 2021; 71:30. [PMID: 34305497 PMCID: PMC8285709 DOI: 10.1186/s13213-021-01641-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Fermented soybean foods (FSF) is popularly consumed in the South-East Asian countries. Bacillus species, a predominant microorganism present in these foods, have demonstrated beneficial and deleterious impacts on human health. These microorganisms produce bioactive compounds during fermentation that have beneficial impacts in improving human health. However, the health risks associated with FSF, food pathogens, biogenic amines (BAs) production, and late-onset anaphylaxis, remain a concern. The purpose of this review is to present an in-depth analysis of positive and negative impacts as a result of consumption of FSF along with the measures to alleviate health risks for human consumption. METHODS This review was composed by scrutinizing contemporary literature of peer-reviewed publications related to Bacillus and FSF. Based on the results from academic journals, this review paper was categorized into FSF, role of Bacillus species in these foods, process of fermentation, beneficial, and adverse influence of these foods along with methods to improve food safety. Special emphasis was given to the potential benefits of bioactive compounds released during fermentation of soybean by Bacillus species. RESULTS The nutritional and functional properties of FSF are well-appreciated, due to the release of peptides and mucilage, which have shown health benefits: in managing cardiac disease, gastric disease, cancer, allergies, hepatic disease, obesity, immune disorders, and especially microbial infections due to the presence of probiotic property, which is a potential alternative to antibiotics. Efficient interventions were established to mitigate pitfalls like the techniques to reduce BAs and food pathogens and by using a defined starter culture to improve the safety and quality of these foods. CONCLUSION Despite some of the detrimental effects produced by these foods, potential health benefits have been observed. Therefore, soybean foods fermented by Bacillus can be a promising food by integrating effective measures for maintaining safety and quality for human consumption. Further, in vivo analysis on the activity and dietary interventions of bioactive compounds among animal models and human volunteers are yet to be achieved which is essential to commercialize them for safe consumption by humans, especially immunocompromised patients.
Collapse
Affiliation(s)
- Trishala Gopikrishna
- Department of Biotechnology, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University, Chennai, India
| | - Harini Keerthana Suresh Kumar
- Department of Biotechnology, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University, Chennai, India
| | - Kumar Perumal
- Department of Biotechnology, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University, Chennai, India
| | - Elavarashi Elangovan
- Department of Biotechnology, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Deemed to be University, Chennai, India
| |
Collapse
|
10
|
Lee H, Jung DH, Seo DH, Chung WH, Seo MJ. Genome analysis of 1-deoxynojirimycin (1-DNJ)-producing Bacillus velezensis K26 and distribution of Bacillus sp. harboring a 1-DNJ biosynthetic gene cluster. Genomics 2020; 113:647-653. [PMID: 33010389 DOI: 10.1016/j.ygeno.2020.09.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/17/2022]
Abstract
1-Deoxynojirumycin (1-DNJ) is a representative iminosugar with α-glucosidase inhibition (AGI) activity. In this study, the full genome sequencing of 1-DNJ-producing Bacillus velezensis K26 was performed. The genome consists of a circular chromosome (4,047,350 bps) with two types of putative virulence factors, five antibiotic resistance genes, and seven secondary metabolite biosynthetic gene clusters. Genomic analysis of a wide range of Bacillus species revealed that a 1-DNJ biosynthetic gene cluster was commonly present in four Bacillus species (B. velezensis, B. pseudomycoides, B. amyloliquefaciens, and B. atrophaeus). In vitro experiments revealed that the increased mRNA expression levels of the three 1-DNJ biosynthetic genes were closely related to increased AGI activity. Genomic comparison and alignment of multiple gene sequences indicated the conservation of the 1-DNJ biosynthetic gene cluster in each Bacillus species. This genomic analysis of Bacillus species having a 1-DNJ biosynthetic gene cluster could provide a basis for further research on 1-DNJ-producing bacteria.
Collapse
Affiliation(s)
- Hyunjin Lee
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon 22012, Republic of Korea
| | - Dong-Hyun Jung
- Bacteria Research Team, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea; Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Won-Hyong Chung
- Research Group of Healthcare, Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Myung-Ji Seo
- Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University, Incheon 22012, Republic of Korea; Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| |
Collapse
|
11
|
Hasanpour M, Iranshahy M, Iranshahi M. The application of metabolomics in investigating anti-diabetic activity of medicinal plants. Biomed Pharmacother 2020; 128:110263. [DOI: 10.1016/j.biopha.2020.110263] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022] Open
|
12
|
Xu Y, Cai D, Zhang H, Gao L, Yang Y, Gao J, Li Y, Yang C, Ji Z, Yu J, Chen S. Enhanced production of iturin A in Bacillus amyloliquefaciens by genetic engineering and medium optimization. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Wu H, Guo Y, Chen L, Chen G, Liang Z. A Novel Strategy to Regulate 1-Deoxynojirimycin Production Based on Its Biosynthetic Pathway in Streptomyces lavendulae. Front Microbiol 2019; 10:1968. [PMID: 31507573 PMCID: PMC6713920 DOI: 10.3389/fmicb.2019.01968] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
This study characterized the biosynthetic pathway of the secondary metabolite 1-deoxynojirimycin (DNJ) from Streptomyces lavendulae. The results revealed that glucose was a preferable precursor for DNJ synthesis, and its carbon skeleton underwent a C2-N-C6 cyclization reaction during synthesis. The biosynthetic pathway was related to the glycolysis pathway, and started from fructose-6-phosphate, and involved amination, dephosphorylation, oxidation, cyclization, dehydration, and reduction reaction steps, yielding DNJ. Then, based on clarified biosynthetic pathway information, precursors, analogs, and metabolism inhibitors were used as novel regulators to enhance the production of DNJ. The results demonstrated that the titer of DNJ could reach 296.56 mg/L, which was 3.3-fold higher than that of a control group (90 mg/L) when sodium citrate (0 h, 5 g/L), sorbose (0 h, 1 g/L), iodoacetic acid (20 h, 50 mg/L), and glucose (26 h, 7 g/L) were added during the fermentation process. This study provides a new understanding of the biosynthetic pathway of DNJ, and also provides an efficient strategy to regulate the production of DNJ based on this biosynthetic pathway, which is a new perspective for the regulation of other secondary metabolites.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganisms and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ye Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganisms and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganisms and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Guiguang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganisms and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zhiqun Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganisms and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
14
|
Thakur K, Zhang YY, Mocan A, Zhang F, Zhang JG, Wei ZJ. 1-Deoxynojirimycin, its potential for management of non-communicable metabolic diseases. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Ma Y, Lv W, Gu Y, Yu S. 1-Deoxynojirimycin in Mulberry ( Morus indica L.) Leaves Ameliorates Stable Angina Pectoris in Patients With Coronary Heart Disease by Improving Antioxidant and Anti-inflammatory Capacities. Front Pharmacol 2019; 10:569. [PMID: 31164826 PMCID: PMC6536649 DOI: 10.3389/fphar.2019.00569] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: Stable angina pectoris (SAP) in patients with coronary heart disease (CHD) and blood stasis syndrome (BSS) is a potentially serious threat to public health. NF-κB signaling is associated with angina pectoris. 1-Deoxynojirimycin (DNJ), which is a unique polyhydroxy alkaloid, is the main active component in mulberry (Morus indica L.) leaves and may exhibit protective properties in the prevention of SAP in patients with CHD by affecting the NF-κB pathway. Methods: DNJ was purified from mulberry leaves by using a pretreated cation exchange chromatography column. A total of 144 SAP patients were randomly and evenly divided into experimental (DNJ treatment) and control (conventional treatment) groups. Echocardiography and ascending aortic elasticity were evaluated. The changes in inflammatory, oxidative, and antioxidant factors, including C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), superoxide dismutase (SOD), and malondialdehyde (MDA), were measured before and after a 4-week treatment. Self-Rating Anxiety Scale (SAS) and Hamilton Depression Scale (HAMD) scores were compared between the two groups. The improvement in SAP score, associated symptoms, and BSS was also investigated. The levels of IkB kinase (IKK), nuclear factor-kappa B (NF-κB), and inhibitor of kappa B α (IkBα) were measured by Western blot. Results: After the 4-week treatment, DNJ increased left ventricular ejection fraction and reduced left ventricular mass index, aortic distensibility, and atherosclerosis index (p < 0.05). DNJ intervention increased angina-free walking distance (p < 0.05). DNJ significantly reduced the levels of hs-CRP, IL-6, TNF-a, MDA, SAS, HAMD, AP, and BSS scores and increased SOD level (p < 0.05). The total effective rate was significantly increased (p < 0.05). The symptoms of angina attack frequency, nitroglycerin use, chest pain and tightness, shortness of breath, and emotional upset were also improved. DNJ reduced IKK and NF-κB levels and increased IkBα level (p < 0.05). Conclusion: The DNJ in mulberry leaves improved the SAP of patients with CHD and BSS by increasing their antioxidant and anti-inflammatory capacities.
Collapse
Affiliation(s)
- Yan Ma
- Department of Cardiovascular, The First Hospital of Jilin University, Changchun, China
| | - Wei Lv
- Department of Cadre Ward, Seven Therapy Area, The First Hospital of Jilin University, Changchun, China
| | - Yan Gu
- Department of Cardiovascular, The First Hospital of Jilin University, Changchun, China
| | - Shui Yu
- Department of Cardiovascular, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Jeong SY, Jeong DY, Kim DS, Park S. Chungkookjang with High Contents of Poly-γ-Glutamic Acid Improves Insulin Sensitizing Activity in Adipocytes and Neuronal Cells. Nutrients 2018; 10:E1588. [PMID: 30380669 PMCID: PMC6266770 DOI: 10.3390/nu10111588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/20/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022] Open
Abstract
We hypothesized that soybeans fermented with Bacillus spp. for 48 h (chungkookjang) would be rich in poly-γ-glutamate (γ-PGA) and would have greater efficacy for improving insulin sensitivity and insulin secretion in 3T3-L1 adipocytes, min6 cells, and PC12 neuronal cells. We screened 20 different strains of B. subtillus and B. amyloliquefaciens spp. for γ-polyglutamate (PGA) production and their anti-diabetic and anti-dementia activities in cell-based studies. Chungkookjang made with two B. amyloliquefaciens spp. (BA730 and BA731) were selected to increase the isoflavonoid and γ-PGA. Insulin-stimulated glucose uptake was higher in 3T3-L1 adipocytes given both chungkookjang extracts than in the cells given vehicle (control). The ethanol extract of BA731 (BA731-E) increased the uptake the most. Triglyceride accumulation decreased in BA731-E and BA731-W and the accumulation increased in BA730-W and BA730-E. The mRNA expression of fatty acid synthetase and acetyl CoA carboxylase was much lower in BA731-E and BA731-W and it was higher in BA730-W than the control. BA730-E and BA730-W also increased peroxisome proliferator-activated receptor (PPAR)-γ activity. Glucose-stimulated insulin secretion increased with the high dosage of BA730-W and BA730-E in insulinoma cells, compared to the control. Insulin contents and cell survival in high glucose media were higher in cells with both BA731-E and BA730-E. Triglyceride deposition and TNF-α mRNA expression were lower in BA731 than the control. The high-dosage treatment of BA730-E and BA731-E increased differentiated neuronal cell survival after treating amyloid-β(25-35) compared to the control. Brain-derived neurotrophic factor and ciliary neurotrophic factor, indices of neuronal cell proliferation, were higher in BA730 and BA731 than in the control. Tau expression was also reduced in BA731 more than the control and it was a similar level of the normal-control. In conclusion, BA730 increased PPAR-γ activity and BA731 enhanced insulin sensitivity in the brain and periphery. BA730 and BA731 prevented and alleviated the symptoms of type 2 diabetes and Alzheimer's disease with different pathways.
Collapse
Affiliation(s)
- Seong-Yeop Jeong
- Department of R & D, Sunchang Research Center for Fermentation Microbes, Sunchang-Gun, Sunchang-yup 56048, Korea.
| | - Do Yeon Jeong
- Department of R & D, Sunchang Research Center for Fermentation Microbes, Sunchang-Gun, Sunchang-yup 56048, Korea.
| | - Da Sol Kim
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea.
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Korea.
| |
Collapse
|
17
|
Lee H, Shin HH, Kim HR, Nam YD, Seo DH, Seo MJ. Culture Optimization Strategy for 1-Deoxynojirimycin-producing Bacillus methylotrophicus K26 Isolated from Korean Fermented Soybean Paste, Doenjang. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0159-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Piao X, Li S, Sui X, Guo L, Liu X, Li H, Gao L, Cai S, Li Y, Wang T, Liu B. 1-Deoxynojirimycin (DNJ) Ameliorates Indomethacin-Induced Gastric Ulcer in Mice by Affecting NF-kappaB Signaling Pathway. Front Pharmacol 2018; 9:372. [PMID: 29725297 PMCID: PMC5917448 DOI: 10.3389/fphar.2018.00372] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
Gastric ulcer (GU) is a main threat to public health. 1-Deoxynojirimycin (DNJ) has antioxidant and anti-inflammatory properties and may prevent GU but related mechanism remains unclear. DNJ was extracted from the supernatants of Bacillus subtilis by using ethanol and purified by using CM-Sepharose chromatography. A GU mouse model was induced by indomethacin. The functional role of DNJ in GU mice was explored by measuring the main molecules in the NF-KappaB pathway. After the model establishment, 40 GU mice were evenly assigned into five categories: IG (received vehicle control), LG (10 μg DNJ daily), MG (20 μg DNJ daily), HG (40 μg DNJ daily), and RG (0.5 mg ranitidine daily). Meanwhile, eight healthy mice were assigned as a control group (CG). After 1-month therapy, weight and gastric volume were investigated. The levels of serum inflammatory cytokines (IL-6 and TNF-α), antioxidant indices [superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH)], and oxidant biomarker malondialdehyde (MDA) were examined via ELISA. Meanwhile, inflammatory cytokine (IL-6 and TNF-α) levels, and key molecules (NF-κB p65), cyclooxygenase 1 (COX-1 and COX2) involved in NF-κB pathway, were analyzed by using Western Blot. COX-1 and COX-2 levels were further measured by immunohistochemistry. The effects of DNJ on gastric functions were explored by measuring the changes of Motilin (MOT), Substance P (SP), Somatostatin (SS), and Vasoactive intestinal peptide (VIP) in GU mouse models with ELISA Kits. The results indicated that DNJ prevented indomethacin-caused increase of gastric volume. DNJ improved histopathology of GU mice when compared with the mice from IG group (P < 0.05). DNJ consumption decreased the levels of IL-6 and TNF-α (P < 0.05). DNJ increased antioxidant indices of GU mice by improving the activities of SOD, CAT and reduced GSH, and reduced MDA levels (P < 0.05). DNJ increased the levels of prostaglandin E2, COX-1, COX2, and reduced the levels of and NF-κB p65 (P < 0.05). DNJ showed protection for gastric functions of GU mice by reducing the levels of MOT and SP, and increasing the levels of SS and VIP. DNJ treatment inactivates NF-κB signaling pathway, and increases anti-ulceration ability of the models.
Collapse
Affiliation(s)
- Xuehua Piao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, China
| | - Shuangdi Li
- Heart Disease Center, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xiaodan Sui
- Department of Hepatology, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Lianyi Guo
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xingmei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hongmei Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Leming Gao
- School of Stomatology, 2nd Dental Center, Peking University, Beijing, China
| | - Shusheng Cai
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yanrong Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tingting Wang
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Baohai Liu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
19
|
Tang GY, Meng X, Li Y, Zhao CN, Liu Q, Li HB. Effects of Vegetables on Cardiovascular Diseases and Related Mechanisms. Nutrients 2017; 9:nu9080857. [PMID: 28796173 PMCID: PMC5579650 DOI: 10.3390/nu9080857] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022] Open
Abstract
Epidemiological studies have shown that vegetable consumption is inversely related to the risk of cardiovascular diseases. Moreover, research has indicated that many vegetables like potatoes, soybeans, sesame, tomatoes, dioscorea, onions, celery, broccoli, lettuce and asparagus showed great potential in preventing and treating cardiovascular diseases, and vitamins, essential elements, dietary fibers, botanic proteins and phytochemicals were bioactive components. The cardioprotective effects of vegetables might involve antioxidation; anti-inflammation; anti-platelet; regulating blood pressure, blood glucose, and lipid profile; attenuating myocardial damage; and modulating relevant enzyme activities, gene expression, and signaling pathways as well as some other biomarkers associated to cardiovascular diseases. In addition, several vegetables and their bioactive components have been proven to protect against cardiovascular diseases in clinical trials. In this review, we analyze and summarize the effects of vegetables on cardiovascular diseases based on epidemiological studies, experimental research, and clinical trials, which are significant to the application of vegetables in prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
20
|
Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. Front Microbiol 2017; 8:1490. [PMID: 28848511 PMCID: PMC5554123 DOI: 10.3389/fmicb.2017.01490] [Citation(s) in RCA: 486] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/24/2017] [Indexed: 01/09/2023] Open
Abstract
Spore-forming bacilli are being explored for the production and preservation of food for many centuries. The inherent ability of production of large number of secretory proteins, enzymes, antimicrobial compounds, vitamins, and carotenoids specifies the importance of bacilli in food chain. Additionally, Bacillus spp. are gaining interest in human health related functional food research coupled with their enhanced tolerance and survivability under hostile environment of gastrointestinal tract. Besides, bacilli are more stable during processing and storage of food and pharmaceutical preparations, making them more suitable candidate for health promoting formulations. Further, Bacillus strains also possess biotherapeutic potential which is connected with their ability to interact with the internal milieu of the host by producing variety of antimicrobial peptides and small extracellular effector molecules. Nonetheless, with proposed scientific evidences, commercial probiotic supplements, and functional foods comprising of Bacillus spp. had not gained much credential in general population, since the debate over probiotic vs pathogen tag of Bacillus in the research and production terrains is confusing consumers. Hence, it’s important to clearly understand the phenotypic and genotypic characteristics of selective beneficial Bacillus spp. and their substantiation with those having GRAS status, to reach a consensus over the same. This review highlights the probiotic candidature of spore forming Bacillus spp. and presents an overview of the proposed health benefits, including application in food and pharmaceutical industry. Moreover, the growing need to evaluate the safety of individual Bacillus strains as well as species on a case by case basis and necessity of more profound analysis for the selection and identification of Bacillus probiotic candidates are also taken into consideration.
Collapse
Affiliation(s)
| | - Namita Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| | - Rohini D Gulhane
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| | - Chetan Sharma
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| |
Collapse
|
21
|
Chen Y, Liu M, Chen S, Wei X. Decreased formation of branched-chain short fatty acids in Bacillus amyloliquefaciens by metabolic engineering. Biotechnol Lett 2017; 39:529-533. [PMID: 27999972 DOI: 10.1007/s10529-016-2270-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/08/2016] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To reduce the unpleasant odor during 1-deoxynojirimycin (DNJ) production, the genes of leucine dehydrogenase (bcd) and phosphate butryltransferase (ptb) were deleted from Bacillus amyloliquefaciens HZ-12, and the concentrations of branched-chain short fatty acids (BCFAs) and DNJ were compared. RESULTS By knockout of the ptb gene, 1.01 g BCFAs kg-1 was produced from fermented soybean by HZ-12Δptb. This was a 56% decrease compared with that of HZ-12 (2.27 g BCFAs kg-1). Moreover, no significant difference was found in the DNJ concentration (0.7 g kg-1). After further deletion of the bcd gene from HZ-12Δptb, no BCFAs was detected in fermented soybeans with HZ-12ΔptbΔbcd, while the DNJ yield decreased by 26% compared with HZ-12. CONCLUSIONS HZ-12Δptb had decreased BCFAs formation but also maintained the stable DNJ yield, which contributed to producing DNJ-rich products with decreased unpleasant smell.
Collapse
Affiliation(s)
- Yangyang Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengjie Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shouwen Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|