1
|
Huo Conceptulization D, Sun Y, Yang Q, Zhang F, Fang G, Zhu H, Liu Y. Selective degradation of hemicellulose and lignin for improving enzymolysis efficiency via pretreatment using deep eutectic solvents. BIORESOURCE TECHNOLOGY 2023; 376:128937. [PMID: 36948430 DOI: 10.1016/j.biortech.2023.128937] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Deep eutectic solvents (DESs) with different acidity and alkalinity were applied for biomass pretreatment, and the conditions were optimized by response surface methodology. The results showed that lactic acid/betaine hydrochloride had the optimal pretreatment efficiency, where the removal rates of hemicellulose and lignin came up to 89% and 73%, and the enzymolysis efficiency was as high as 92%. Furthermore, eight types of chloride salts with different valence states were introduced into the DESs as the third component. The chloride salts could improve the pretreatment efficiency and positively correlated with the metal valence state. Specifically, AlCl3 was significantly superior in improving the pretreatment efficiency, where the enzymolysis efficiency reached 96% due to the destruction of crystalline region and the esterification of partial cellulose. Therefore, it is proposed that adding highly valent metal salts to acidic DESs has higher pretreatment and enzymatic efficiency.
Collapse
Affiliation(s)
- Dan Huo Conceptulization
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science & Technology, Tianjin 300457, China; Shandong Huatai Paper Co., Ltd., Dongying 275335, China; Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Tianjin Jianfeng Natural Product R&D Co., Ltd., Tianjin 300457, China.
| | - Yuekai Sun
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qiulin Yang
- Tianjin Key Laboratory of Pulp & Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | | | - Guigan Fang
- Jiangsu Province Biomass Energy and Materials Laboratory, Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China
| | - Hongxiang Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ying Liu
- Tianjin Jianfeng Natural Product R&D Co., Ltd., Tianjin 300457, China
| |
Collapse
|
2
|
de Sousa Nascimento L, Melo Nascimento RJ, da Mata AKA, Felipe VTA, Araújo RF, Bezerra LCA, Almeida JS, Mattos ALA, Uchoa DEA, de Novais LMR, D'Oca CDRM, Avelino F. Development of a phosphorous-based biorefinery process for producing lignocellulosic functional materials from coconut wastes. Int J Biol Macromol 2023; 239:124300. [PMID: 37011748 DOI: 10.1016/j.ijbiomac.2023.124300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
This work aimed to develop a phosphorous-based biorefinery process for obtaining phosphorylated lignocellulosic fractions in a one-pot protocol from coconut fiber. Natural coconut fiber (NCF) was mixed with 85 % m/m H3PO4 at 70 °C for 1 h to yield the modified coconut fiber (MCF), aqueous phase (AP), and coconut fiber lignin (CFL). MCF was characterized by its TAPPI, FTIR, SEM, EDX, TGA, WCA, and P content. AP was characterized regarding its pH, conductivity, glucose, furfural, HMF, total sugars and ASL contents. CFL structure was evaluated by FTIR, 1H, 31P and 1H-13C HSQC NMR, TGA and P content and was compared to that of milled wood lignin (MWL). It was observed that MCF and CFL were phosphorylated during the pulping (0.54 and 0.23 % wt., respectively), while AP has shown high sugar levels, low inhibitor content, and some remaining phosphorous. The phosphorylation of MCF and CFL also showed an enhancement of their thermal and thermo-oxidative properties. The results show that a platform of functional materials such as biosorbents, biofuels, flame retardants, and biocomposites can be created through an eco-friendly, simple, fast, and novel biorefinery process.
Collapse
|
3
|
Tian D, Chen Y, Shen F, Luo M, Huang M, Hu J, Zhang Y, Deng S, Zhao L. Self-generated peroxyacetic acid in phosphoric acid plus hydrogen peroxide pretreatment mediated lignocellulose deconstruction and delignification. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:224. [PMID: 34823568 PMCID: PMC8614055 DOI: 10.1186/s13068-021-02075-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/13/2021] [Indexed: 06/10/2023]
Abstract
BACKGROUND Peroxyacetic acid involved chemical pretreatment is effective in lignocellulose deconstruction and oxidation. However, these peroxyacetic acid are usually artificially added. Our previous work has shown that the newly developed PHP pretreatment (phosphoric acid plus hydrogen peroxide) is promising in lignocellulose biomass fractionation through an aggressive oxidation process, while the information about the synergistic effect between H3PO4 and H2O2 is quite lack, especially whether some strong oxidant intermediates is existed. In this work, we reported the PHP pretreatment system could self-generate peroxyacetic acid oxidant, which mediated the overall lignocellulose deconstruction, and hemicellulose/lignin degradation. RESULTS The PHP pretreatment profile on wheat straw and corn stalk were investigated. The pathways/mechanisms of peroxyacetic acid mediated-PHP pretreatment were elucidated through tracing the structural changes of each component. Results showed that hemicellulose was almost completely solubilized and removed, corresponding to about 87.0% cellulose recovery with high digestibility. Rather high degrees of delignification of 83.5% and 90.0% were achieved for wheat straw and corn stalk, respectively, with the aid of peroxyacetic acid oxidation. A clearly positive correlation was found between the concentration of peroxyacetic acid and the extent of lignocellulose deconstruction. Peroxyacetic acid was mainly self-generated through H2O2 oxidation of acetic acid that was produced from hemicellulose deacetylation and lignin degradation. The self-generated peroxyacetic acid then further contributed to lignocellulose deconstruction and delignification. CONCLUSIONS The synergistic effect of H3PO4 and H2O2 in the PHP solvent system could efficiently deconstruct wheat straw and corn stalk lignocellulose through an oxidation-mediated process. The main function of H3PO4 was to deconstruct biomass recalcitrance and degrade hemicellulose through acid hydrolysis, while the function of H2O2 was to facilitate the formation of peroxyacetic acid. Peroxyacetic acid with stronger oxidation ability was generated through the reaction between H2O2 and acetic acid, which was released from xylan and lignin oxidation/degradation. This work elucidated the generation and function of peroxyacetic acid in the PHP pretreatment system, and also provide useful information to tailor peroxide-involved pretreatment routes, especially at acidic conditions.
Collapse
Affiliation(s)
- Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Yiyi Chen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.
| | - Maoyuan Luo
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Mei Huang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Yanzong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Shihuai Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
| | - Li Zhao
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Valorizing Waste Lignocellulose-Based Furniture Boards by Phosphoric Acid and Hydrogen Peroxide (Php) Pretreatment for Bioethanol Production and High-Value Lignin Recovery. SUSTAINABILITY 2019. [DOI: 10.3390/su11216175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three typical waste furniture boards (fiberboard, chipboard, and blockboard) were pretreated with phosphoric acid and hydrogen peroxide (PHP). The fractionation process of these feedstocks was attempted in order to harvest the cellulose-rich fraction for enzymatic hydrolysis and bioethanol conversion; further, lignin recovery was also considered in this process. The results indicated that 78.9–91.2% of the cellulose was recovered in the cellulose-rich fraction. The decreased crystallinity, which promoted the water retention capacity and enzyme accessibility, contributed greatly to the excellent hydrolysis performance of the cellulose-rich fraction. Therefore, rather high cellulose–glucose conversions of 83.3–98.0% were achieved by hydrolyzing the pretreated furniture boards, which allowed for harvesting 208–241 g of glucose from 1.0 kg of feedstocks. Correspondingly, 8.1–10.4 g/L of ethanol were obtained after 120 h of simultaneous saccharification and fermentation. The harvested lignin exhibited abundant carboxyl –OH groups (0.61–0.67 mmol g−1). In addition, approximately 15–26 g of harvested oligosaccharides were integrated during PHP pretreatment. It was shown that PHP pretreatment is feasible for these highly recalcitrant biomass board materials, which can diversify the bioproducts used in the integrated biorefinery concept.
Collapse
|
5
|
Huang C, Lin W, Lai C, Li X, Jin Y, Yong Q. Coupling the post-extraction process to remove residual lignin and alter the recalcitrant structures for improving the enzymatic digestibility of acid-pretreated bamboo residues. BIORESOURCE TECHNOLOGY 2019; 285:121355. [PMID: 31004950 DOI: 10.1016/j.biortech.2019.121355] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 05/08/2023]
Abstract
In this work, a mild and facile post-extraction using different reagents was evaluated to overcome these recalcitrance for improving the enzymatic digestibility of acid-pretreated bamboo residues by removing the lignin and disrupting its inhibitory properties. Results showed that the enzymatic digestibility of acid-pretreated bamboo residues can be improved from 15.4% to 61.4%, 59.7%, and 42.8% by room temperature post-extraction with phosphoric acid, urea, and ethanol, respectively. Several compelling correlations (R2 > 0.5) were observable between enzymatic digestibility and structural changes, including delignification, reducing of substrate hydrophobicity, altering cellulose crystallinity, and elevations to the residual lignin syringyl-to-guaiacyl (S/G) ratio and functional groups. The results serve as a demonstration of the downstream value that can be gained when coupling a post-extraction process with acid pretreatment of bamboo residues, resulting in greater fermentable sugar production.
Collapse
Affiliation(s)
- Caoxing Huang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenhuan Lai
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Li
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Department of Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Yao F, Tian D, Shen F, Hu J, Zeng Y, Yang G, Zhang Y, Deng S, Zhang J. Recycling solvent system in phosphoric acid plus hydrogen peroxide pretreatment towards a more sustainable lignocellulose biorefinery for bioethanol. BIORESOURCE TECHNOLOGY 2019; 275:19-26. [PMID: 30572259 DOI: 10.1016/j.biortech.2018.12.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 05/15/2023]
Abstract
Pretreating lignocellulosic biomass by phosphoric acid plus hydrogen peroxide (PHP) was integrated with recovering concentrated phosphoric acid (CPA), lignin, and treating phosphorus (P) wastewater. Results indicated no significant effects on cellulose recovery was observed by promoting ethanol addition, but CPA and lignin recovery were improved to 80.0% and 23.3%, respectively. Increasing water addition did not greatly affect CPA recovery (80.0-80.4%), and lignin recovery (22.8-23.6%). Consequently, the ratio of 11:1 (ethanol/PHP solution) and 4:1 (water/de-ethanol liquor) were suggested for solid/liquid separation and lignin precipitation. Average 86.0% CPA was recycled for pretreatment (≥11 runs) with average 96.3% cellulose-glucose conversion. A specially-developed biochar from crab shell was efficient on P removal with maximal adsorption capacity of 261.6 mg/g. Pretreating 1.0 kg wheat straw by 1.1 kg CPA harvested 155.0 g ethanol, 45.0 g high purity lignin and 4.9 kg P-rich biochar fertilizer. Recovering CPA, biochar-fertilizer and lignin, and P wastewater treatment made PHP pretreatment towards more sustainable and cleaner.
Collapse
Affiliation(s)
- Fengpei Yao
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Jinguang Hu
- Department of Wood Science, the University of British Columbia, Vancouver V6T 1Z4, BC, Canada; Chemical and Petroleum Engineering, Schulich School of Engineering, the University of Calgary, Calgary T2N 4H9, Canada
| | - Yongmei Zeng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Gang Yang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanzong Zhang
- Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shihuai Deng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jing Zhang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
7
|
Qiu J, Tian D, Shen F, Hu J, Zeng Y, Yang G, Zhang Y, Deng S, Zhang J. Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings. BIORESOURCE TECHNOLOGY 2018; 268:355-362. [PMID: 30096643 DOI: 10.1016/j.biortech.2018.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 05/26/2023]
Abstract
Phosphoric acid plus hydrogen peroxide (PHP) pretreatment was employed on wheat straw for ethanol conversion by simultaneous saccharification and fermentation (SSF) at high loadings. Results showed solid loading of PHP-pretreated wheat straw can be greatly promoted to 20%. Although more enzyme input improved ethanol conversion significantly, it still can be potentially reduced to 10-20 mg protein/g cellulose. Increasing yeast input also promoted ethanol conversion, however, the responses were not significant. Response surface method was employed to optimize SSF conditions with the strategy of maximizing ethanol conversion and concentration and minimizing enzyme and yeast input. Results indicated that ethanol conversion of 88.2% and concentration of 69.9 g/L were obtained after 120 h SSF at solid loading of 15.3%, and CTec2 enzyme and yeast were in lower input of 13.2 mg protein/g cellulose and 1.0 g/L, respectively. Consequently, 15.5 g ethanol was harvested from 100 g wheat straw in the optimal conditions.
Collapse
Affiliation(s)
- Jingwen Qiu
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Jinguang Hu
- Department of Wood Science, The University of British Columbia, Vancouver V6T 1Z4, BC, Canada; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, FIN-00076 Aalto, Finland
| | - Yongmei Zeng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Gang Yang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanzong Zhang
- Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shihuai Deng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jing Zhang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
8
|
Wang Q, Tian D, Hu J, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Hu Y. Fates of hemicellulose, lignin and cellulose in concentrated phosphoric acid with hydrogen peroxide (PHP) pretreatment. RSC Adv 2018; 8:12714-12723. [PMID: 35541248 PMCID: PMC9079361 DOI: 10.1039/c8ra00764k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/27/2018] [Indexed: 11/30/2022] Open
Abstract
Xylan, de-alkaline lignin and microcrystalline cellulose were employed as representative models of hemicellulose, lignin and cellulose in lignocellulosic biomass. These three model compounds, together with the real-world biomass, wheat straw were pretreated using the newly developed PHP pretreatment (concentrated phosphoric acid plus hydrogen peroxide) to better understand the structural changes of the recovered solid and chemical fractions in the liquid. Results showed that almost all xylan and higher than 70% lignin were removed from wheat straw, and more than 90% cellulose was recovered in the solid fraction. The pretreated model xylan recovered via ethanol-precipitation still maintained its original structural features. The degree of polymerization of soluble xylooligosaccharides in liquid was reduced, resulting in the increase of monomeric xylose release. Further xylose oxidization via the path of 2-furancarboxylic acid → 2(5H)-furanone → acrylic acid → formic acid was mainly responsible for xylan degradation. The chemical structure of de-alkaline lignin was altered significantly by PHP pretreatment. Basic guaiacyl units of lignin were depolymerized, and aromatic rings and side aliphatic chains were partially decomposed. Ring-opening reactions of the aromatics and cleavage of C–O–C linkages were two crucial paths to lignin oxidative degradation. In contrast to lignin, no apparent changes occurred on microcrystalline cellulose. The reason was likely that acid-depolymerization and oxidative degradation of cellulose were greatly prevented by the formed cellulose phosphate. The transformation of cellulose, hemicellulose, and lignin in lignocellulosic biomass in a novel pretreatment are elucidated based on model fractions.![]()
Collapse
|
9
|
Qiu J, Ma L, Shen F, Yang G, Zhang Y, Deng S, Zhang J, Zeng Y, Hu Y. Pretreating wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and ethanol production at high solid loading. BIORESOURCE TECHNOLOGY 2017; 238:174-181. [PMID: 28433905 DOI: 10.1016/j.biortech.2017.04.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 05/26/2023]
Abstract
Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis and ethanol fermentation at high solid loadings. Results indicated solid loading could reach 20% with 77.4% cellulose-glucose conversion and glucose concentration of 164.9g/L in hydrolysate, it even was promoted to 25% with only 3.4% decrease on cellulose-glucose conversion as the pretreated-wheat straw was dewatered by air-drying. 72.9% cellulose-glucose conversion still was achieved as the minimized enzyme input of 20mg protein/g cellulose was employed for hydrolysis at 20% solid loading. In the corresponding conditions, 100g wheat straw can yield 11.2g ethanol with concentration of 71.2g/L by simultaneous saccharification and fermentation. Thus, PHP-pretreatment benefitted the glucose or ethanol yield at high solid loadings with lower enzyme input. Additionally, decreases on the maximal cellulase adsorption and the direct-orange/direct-blue indicated drying the PHP-pretreated substrates negatively affected the hydrolysis due to the shrinkage of cellulase-size-accommodable pores.
Collapse
Affiliation(s)
- Jingwen Qiu
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Lunjie Ma
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Gang Yang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yanzong Zhang
- Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Shihuai Deng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jing Zhang
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yongmei Zeng
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yaodong Hu
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
10
|
Wang S, Wang Z, Wang Y, Nie Q, Yi X, Ge W, Yang J, Xian M. Production of isoprene, one of the high-density fuel precursors, from peanut hull using the high-efficient lignin-removal pretreatment method. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:297. [PMID: 29234464 PMCID: PMC5721603 DOI: 10.1186/s13068-017-0988-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/02/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Isoprene as the feedstock can be used to produce renewable energy fuels, providing an alternative to replace the rapidly depleting fossil fuels. However, traditional method for isoprene production could not meet the demands for low-energy consumption and environment-friendliness. Moreover, most of the previous studies focused on biofuel production out of lignocellulosic materials such as wood, rice straw, corn cob, while few studies concentrated on biofuel production using peanut hull (PH). As is known, China is the largest peanut producer in the globe with an extremely considerable amount of PH to be produced each year. Therefore, a novel, renewable, and environment-friendly pretreatment strategy to increase the enzymatic hydrolysis efficiency of cellulose and reduce the inhibitors generation was developed to convert PH into isoprene. RESULTS The optimal pretreatment conditions were 100 °C, 60 min, 10% (w/v) solid loading with a 2:8 volume ratio of phosphoric acid and of hydrogen peroxide. In comparison with the raw PH, the hemicellulose and lignin were reduced to 85.0 and 98.0%, respectively. The cellulose-glucose conversion of pretreated PH reached up to 95.0% in contrast to that of the raw PH (19.1%). Only three kinds of inhibitors including formic acid, levulinic acid, and a little furfural were formed during the pretreatment process, whose concentrations were too low to inhibit the isoprene yield for Escherichia coli fermentation. Moreover, compared with the isoprene yield of pure glucose fermentation (298 ± 9 mg/L), 249 ± 6.7 and 294 ± 8.3 mg/L of isoprene were produced using the pretreated PH as the carbon source by the engineered strain via separate hydrolysis and fermentation and simultaneous saccharification and fermentation (SSF) methods, respectively. The isoprene production via SSF had a 9.8% glucose-isoprene conversion which was equivalent to 98.8% of isoprene production via the pure glucose fermentation. CONCLUSIONS The optimized phosphoric acid/hydrogen peroxide combination pretreatment approach was proved effective to remove lignin and hemicellulose from lignocellulosic materials. Meanwhile, the pretreated PH could be converted into isoprene efficiently in the engineered Escherichia coli. It is concluded that this novel strategy of isoprene production using lignocellulosic materials pretreated by phosphoric acid/hydrogen peroxide is a promising alternative to isoprene production using traditional way which can fully utilize non-renewable fossil sources.
Collapse
Affiliation(s)
- Sumeng Wang
- Shandong Key Lab of Applied Mycology, College of Life Science, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109 China
| | - Zhaobao Wang
- Shandong Key Lab of Applied Mycology, College of Life Science, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109 China
| | - Yongchao Wang
- Shandong Key Lab of Applied Mycology, College of Life Science, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109 China
| | - Qingjuan Nie
- Foreign Languages School, Qingdao Agricultural University, Qingdao, 266109 China
| | - Xiaohua Yi
- Shandong Key Lab of Applied Mycology, College of Life Science, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109 China
| | - Wei Ge
- Shandong Key Lab of Applied Mycology, College of Life Science, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109 China
| | - Jianming Yang
- Shandong Key Lab of Applied Mycology, College of Life Science, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109 China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| |
Collapse
|