1
|
Balashova NV, Zavileyskiy LG, Artiukhov AV, Shaposhnikov LA, Sidorova OP, Tishkov VI, Tramonti A, Pometun AA, Bunik VI. Efficient Assay and Marker Significance of NAD+ in Human Blood. Front Med (Lausanne) 2022; 9:886485. [PMID: 35665345 PMCID: PMC9162244 DOI: 10.3389/fmed.2022.886485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Oxidized nicotinamide adenine dinucleotide (NAD+) is a biological molecule of systemic importance. Essential role of NAD+ in cellular metabolism relies on the substrate action in various redox reactions and cellular signaling. This work introduces an efficient enzymatic assay of NAD+ content in human blood using recombinant formate dehydrogenase (FDH, EC 1.2.1.2), and demonstrates its diagnostic potential, comparing NAD+ content in the whole blood of control subjects and patients with cardiac or neurological pathologies. In the control group (n = 22, 25–70 years old), our quantification of the blood concentration of NAD+ (18 μM, minimum 15, max 23) corresponds well to NAD+ quantifications reported in literature. In patients with demyelinating neurological diseases (n = 10, 18–55 years old), the NAD+ levels significantly (p < 0.0001) decrease (to 14 μM, min 13, max 16), compared to the control group. In cardiac patients with the heart failure of stage II and III according to the New York Heart Association (NYHA) functional classification (n = 24, 42–83 years old), the blood levels of NAD+ (13 μM, min 9, max 18) are lower than those in the control subjects (p < 0.0001) or neurological patients (p = 0.1). A better discrimination of the cardiac and neurological patients is achieved when the ratios of NAD+ to the blood creatinine levels, mean corpuscular volume or potassium ions are compared. The proposed NAD+ assay provides an easy and robust tool for clinical analyses of an important metabolic indicator in the human blood.
Collapse
Affiliation(s)
- Natalia V. Balashova
- Department of Clinical Laboratory Diagnostics, Faculty of Advanced Medicine, M.F. Vladimirsky Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
- Department of Dietetics and Clinical Nutritionology, Faculty of Continuing Medical Education, RUDN Medical Institute, Moscow, Russia
| | - Lev G. Zavileyskiy
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Artem V. Artiukhov
- Department of Biokinetics, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biochemistry, Sechenov University, Moscow, Russia
| | - Leonid A. Shaposhnikov
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Olga P. Sidorova
- Department of Neurology, Faculty of Advanced Medicine, M.F. Vladimirsky Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russia
| | - Vladimir I. Tishkov
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, Italian National Research Council, Department of Biochemical Sciences “A. Rossi Fanelli,” Sapienza University of Rome, Rome, Italy
| | - Anastasia A. Pometun
- Department of Chemical Enzymology, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - Victoria I. Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Department of Biokinetics, A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Biochemistry, Sechenov University, Moscow, Russia
- *Correspondence: Victoria I. Bunik,
| |
Collapse
|
2
|
Zhou F, Mu X, Nie Y, Xu Y. Enhanced catalytic efficiency and coenzyme affinity of leucine dehydrogenase by comprehensive screening strategy for L-tert-leucine synthesis. Appl Microbiol Biotechnol 2021; 105:3625-3634. [PMID: 33929595 DOI: 10.1007/s00253-021-11323-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/25/2021] [Accepted: 04/26/2021] [Indexed: 11/25/2022]
Abstract
L-tert-leucine (L-Tle) is widely used as vital chiral intermediate for pharmaceuticals and as chiral auxiliarie for organocatalysis. L-Tle is generally prepared via the asymmetric reduction of trimethylpyruvate (TMP) catalyzed by NAD+-dependent leucine dehydrogenase (LeuDH). To improve the catalytic efficiency and coenzyme affinity of LeuDH from Bacillus cereus, mutation libraries constructed by error-prone PCR and iterative saturation mutation were screened by two kinds of high-throughput methods. Compared with the wild type, the affinity of the selected mutant E24V/E116V for TMP and NADH increased by 7.7- and 2.8-fold, respectively. And the kcat/Km of E24V/E116V on TMP was 5.4-fold higher than that of the wild type. A coupled reaction comprising LeuDH with glucose dehydrogenase of Bacillus amyloliquefaciens resulted in substrate inhibition at high TMP concentrations (0.5 M), which was overcome by batch-feeding of the TMP substrate. The total turnover number and specific space-time conversion of 0.57 M substrate increased to 11,400 and 22.8 mmol·h-1·L-1·g-1, respectively. KEY POINTS: • The constructed new high-throughput screening strategy takes into account the two indicators of catalytic efficiency and coenzyme affinity. • A more efficient leucine dehydrogenase (LeuDH) mutant (E24V/E116V) was identified. • E24V/E116V has potential for the industrial synthesis of L-tert-leucine.
Collapse
Affiliation(s)
- Feng Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqing Mu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,Suqian Industrial Technology Research Institute of Jiangnan University, Suqian, 223814, China.
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China. .,Suqian Industrial Technology Research Institute of Jiangnan University, Suqian, 223814, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
3
|
Chang Y, Zhong W, Liang J, Zhang A, Lin Y. Polydimethylsiloxane-polymethacrylate block copolymers containing quaternary ammonium salts against Fusarium oxysporum f. sp. cubense race 4 in soil: Antifungal activities and pot experiments. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Wang L, Zhu W, Gao Z, Zhou H, Cao F, Jiang M, Li Y, Jia H, Wei P. Biosynthetic L-tert-leucine using Escherichia coli co-expressing a novel NADH-dependent leucine dehydrogenase and a formate dehydrogenase. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Zhuang X, Zhang A, Qiu S, Tang C, Zhao S, Li H, Zhang Y, Wang Y, Wang B, Fang B, Hong W. Coenzyme Coupling Boosts Charge Transport through Single Bioactive Enzyme Junctions. iScience 2020; 23:101001. [PMID: 32259671 PMCID: PMC7136626 DOI: 10.1016/j.isci.2020.101001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Oxidation of formate to CO2 is catalyzed via the donation of electrons from formate dehydrogenase (FDH) to nicotinamide adenine dinucleotide (NAD+), and thus the charge transport characteristics of FDH become essential but remain unexplored. Here, we investigated the charge transport through single-enzyme junctions of FDH using the scanning tunneling microscope break junction technique (STM-BJ). We found that the coupling of NAD+ with FDH boosts the charge transport by ∼2,100%, and the single-enzyme conductance highly correlates with the enzyme activity. The combined flicker noise analysis demonstrated the switching of the coenzyme-mediated charge transport pathway and supported by the significantly reduced HOMO-LUMO gap from calculations. Site-specific mutagenesis analysis demonstrated that FDH-NAD+ stably combined own higher bioactivity and boosts charge transport, and the coupling has been optimized via the natural selection. Our work provides evidence of hydrogen bond coupling in bioactivity but also bridges the charge transport through single-enzyme junctions and enzyme activities. Binding of NAD+ with FDH boosts the charge transport by more than 2,100% Single-enzyme conductance highly correlates with the enzyme activity Hydrogen bond bridges the charge transport and enzyme activities Experiments combined with calculations probe switching of charge transport pathway
Collapse
Affiliation(s)
- Xiaoyan Zhuang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Chemical Biology of Fujian Province, Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Aihui Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Chemical Biology of Fujian Province, Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Siyao Qiu
- Science & Technology Innovation Institute, Dongguan University of Technology, Dongguan 523018, China
| | - Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shiqiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongchun Li
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yonghui Zhang
- College of Food and Biology Engineering, Jimei University, Xiamen 361005, China
| | - Yali Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Chemical Biology of Fujian Province, Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Baishan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Chemical Biology of Fujian Province, Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|