1
|
Duan XY, Song L, Jin Q, Yang XN, Liu HH, Wang C, Lu X, Ji XJ, Wang Z, Tian Y. Enhancing Cordycepin Biosynthesis in Yarrowia lipolytica via Lipid Droplets Compartmentalization Engineering and Optimized Fermentation Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12908-12916. [PMID: 40367369 DOI: 10.1021/acs.jafc.5c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Cordycepin, a physiologically active nucleoside compound with broad applications in healthcare, is biosynthesized in Cordyceps militaris through a protein complex formed by CmCns1 and CmCns2. To enhance cordycepin heterologous production in Yarrowia lipolytica, this study confirmed the colocalization of CmCns1 and CmCns2 on lipid droplets, with CmCns1 dominating this process by recruiting CmCns2 from the cytoplasm to lipid droplets via strong interactions. Critical lipid-droplet-targeting motifs within CmCns1 were identified. On this basis, an engineered strain YL-CD3 was developed by expanding the lipid droplets and CmCns3-NK compartmentalization. Then, the fermentation parameters were optimized to increase the yield of cordycepin to 2008.23 mg/L in shake flasks. Finally, fed-batch fermentation in a 2.4 L bioreactor for 144 h achieved 4780.75 mg/L (150.1 mg/OD600 and 66.57 mg/g glucose), marking the highest reported titer in Y. lipolytica. This work establishes Y. lipolytica as a high-potential platform for efficient cordycepin biosynthesis.
Collapse
Affiliation(s)
- Xi-Yu Duan
- College of Life Science, Hunan Normal University, No. 36 Lushan Road, Changsha 410081, P. R. China
| | - Liping Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, P. R. China
| | - Qing Jin
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, P. R. China
| | - Xiao-Na Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, P. R. China
| | - Hu-Hu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, P. R. China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, P. R. China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, P. R. China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, No. 36 Lushan Road, Changsha 410081, P. R. China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, P. R. China
- Institute of Agricultural Quality Standard and Testing, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, P. R. China
| |
Collapse
|
2
|
Mota MN, Múgica P, Sá-Correia I. Exploring Yeast Diversity to Produce Lipid-Based Biofuels from Agro-Forestry and Industrial Organic Residues. J Fungi (Basel) 2022; 8:687. [PMID: 35887443 PMCID: PMC9315891 DOI: 10.3390/jof8070687] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Exploration of yeast diversity for the sustainable production of biofuels, in particular biodiesel, is gaining momentum in recent years. However, sustainable, and economically viable bioprocesses require yeast strains exhibiting: (i) high tolerance to multiple bioprocess-related stresses, including the various chemical inhibitors present in hydrolysates from lignocellulosic biomass and residues; (ii) the ability to efficiently consume all the major carbon sources present; (iii) the capacity to produce lipids with adequate composition in high yields. More than 160 non-conventional (non-Saccharomyces) yeast species are described as oleaginous, but only a smaller group are relatively well characterised, including Lipomyces starkeyi, Yarrowia lipolytica, Rhodotorula toruloides, Rhodotorula glutinis, Cutaneotrichosporonoleaginosus and Cutaneotrichosporon cutaneum. This article provides an overview of lipid production by oleaginous yeasts focusing on yeast diversity, metabolism, and other microbiological issues related to the toxicity and tolerance to multiple challenging stresses limiting bioprocess performance. This is essential knowledge to better understand and guide the rational improvement of yeast performance either by genetic manipulation or by exploring yeast physiology and optimal process conditions. Examples gathered from the literature showing the potential of different oleaginous yeasts/process conditions to produce oils for biodiesel from agro-forestry and industrial organic residues are provided.
Collapse
Affiliation(s)
- Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Paula Múgica
- BIOREF—Collaborative Laboratory for Biorefineries, Rua da Amieira, Apartado 1089, São Mamede de Infesta, 4465-901 Matosinhos, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
- i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
3
|
V Sreeharsha R, Sai Tejaswini G, Venkata Mohan S. Dual-stage biorefinery to convert spentwash hydrolysate into oleochemicals using Trichosporon cutaneum and Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2022; 354:127146. [PMID: 35421562 DOI: 10.1016/j.biortech.2022.127146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Yeast lipids from low-cost renewable feedstock are valuable resources for oleochemicals thus enabling circular chemistry. Current study focuses on lipid and volatile fatty acid (VFA) production through dual-stage fermentation of spentwash in a biorefinery framework with Trichosporon cutaneum (Tc) and Yarrowia lipolytica (Yl). During cell proliferation phase, Tc and Yl accumulated 2.9 and 2.5 g/L of dry biomass respectively in acid-hydrolysed spentwash (AHSW) and produced 16 and 5.5 g/L of total VFA respectively. Lipid yields (29.8%) and lipid titres (0.89 g/L) were higher in Tc/AHSW, when compared to Yl indicating the efficacy of Tc in spentwash bioremediation. Lipid accumulation was enhanced to 35% in Tc/AHSW, in presence of 0.05% NH4Cl due to oxidative stress of ammonium ions. Analysis of fatty acid composition revealed the presence of higher oleic acid, which is ideal for biodiesel production. The results demonstrate a sustainable biorefinery model for bioremediation of spentwash and its value addition.
Collapse
Affiliation(s)
- Rachapudi V Sreeharsha
- Bioengineering and Environmental Science Laboratory, Department of Energy and Environmental Engineering, CSIR- Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Department of Life Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - G Sai Tejaswini
- Bioengineering and Environmental Science Laboratory, Department of Energy and Environmental Engineering, CSIR- Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Science Laboratory, Department of Energy and Environmental Engineering, CSIR- Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| |
Collapse
|
4
|
Singh S, Pandey D, Saravanabhupathy S, Daverey A, Dutta K, Arunachalam K. Liquid wastes as a renewable feedstock for yeast biodiesel production: Opportunities and challenges. ENVIRONMENTAL RESEARCH 2022; 207:112100. [PMID: 34619127 DOI: 10.1016/j.envres.2021.112100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Microbial lipids (bacterial, yeast, or algal) production and its utilization as a feedstock for biodiesel production in a sustainable and economical way along with waste degradation is a promising technology. Oleaginous yeasts have demonstrated multiple advantages over algae and bacteria such as high lipid yields, lipid similarity to vegetable oil, and requirement of lesser area for cultivation. Oleaginous yeasts grown on lignocellulosic solid waste as renewable feedstocks have been widely reported and reviewed. Recently, industrial effluents and other liquid wastes have been evaluated as feedstocks for biodiesel production from oleaginous yeasts. The idea of the utilization of wastewater for the growth of oleaginous yeasts for simultaneous wastewater treatment and lipid production is gaining attention among researchers. However, the detailed knowledge on the economic aspects of different process involved during the conversion of oleaginous yeast into lipids hinders its large-scale application. Therefore, this review aims to provide an overview of yeast-derived biodiesel production by utilizing industrial effluents and other liquid wastes as feedstocks. Various technologies for biomass harvesting, lipid extraction and the economic aspects specifically focused on yeast biodiesel production were also analyzed and reported in this review. The utilization of liquid wastes and the incorporation of cost-efficient harvesting and lipid extraction strategy would facilitate large-scale commercialization of biodiesel production from oleaginous yeasts in near future.
Collapse
Affiliation(s)
- Sangeeta Singh
- National Institute of Technology Rourkela, Odisha, 769008, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India
| | | | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India.
| | - Kasturi Dutta
- National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Kusum Arunachalam
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India
| |
Collapse
|
5
|
Chen C, Zhang X, Liu C, Wu Y, Zheng G, Chen Y. Advances in downstream processes and applications of biological carboxylic acids derived from organic wastes. BIORESOURCE TECHNOLOGY 2022; 346:126609. [PMID: 34954356 DOI: 10.1016/j.biortech.2021.126609] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Recovering carboxylic acids derived from organic wastes from fermentation broth is challenging. To provide a reference for future study and industrial application, this review summarized recent advances in recovery technologies of carboxylic acids including precipitation, extraction, adsorption, membrane-based processes, etc. Meanwhile, applications of recovered carboxylic acids are summarized as well to help choose suitable downstream processes according to purity requirement. Integrated processes are required to remove the impurities from the complicated fermentation broth, at the cost of loss and expense. Compared with chemical processes, biological synthesis is better options due to low requirements for the substrates. Generally, the use of toxic agents, consumption of acid/alkaline and membrane fouling hamper the sustainability and scale-up of the downstream processes. Future research on novel solvents and materials will facilitate the sustainable recovery and reduce the cost of the downstream processes.
Collapse
Affiliation(s)
- Chuang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guanghong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
6
|
Kamal R, Liu Y, Li Q, Huang Q, Wang Q, Yu X, Zhao ZK. Exogenous l-proline improved Rhodosporidium toruloides lipid production on crude glycerol. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:159. [PMID: 32944075 PMCID: PMC7490893 DOI: 10.1186/s13068-020-01798-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Crude glycerol as a promising feedstock for microbial lipid production contains several impurities that make it toxic stress inducer at high amount. Under stress conditions, microorganisms can accumulate l-proline as a safeguard. Herein, l-proline was assessed as an anti-stress agent in crude glycerol media. RESULTS Crude glycerol was converted to microbial lipids by the oleaginous yeast Rhodosporidium toruloides CGMCC 2.1389 in a two-staged culture mode. The media was supplied with exogenous l-proline to improve lipid production efficiency in high crude glycerol stress. An optimal amount of 0.5 g/L l-proline increased lipid titer and lipid yield by 34% and 28%, respectively. The lipid titer of 12.2 g/L and lipid content of 64.5% with a highest lipid yield of 0.26 g/g were achieved with l-proline addition, which were far higher than those of the control, i.e., lipid titer of 9.1 g/L, lipid content of 58% and lipid yield of 0.21 g/g. Similarly, l-proline also improved cell growth and glycerol consumption. Moreover, fatty acid compositional profiles of the lipid products was found suitable as a potential feedstock for biodiesel production. CONCLUSION Our study suggested that exogenous l-proline improved cell growth and lipid production on crude glycerol by R. toruloides. The fact that higher lipid yield as well as glycerol consumption indicated that l-proline might act as a potential anti-stress agent for the oleaginous yeast strain.
Collapse
Affiliation(s)
- Rasool Kamal
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Yuxue Liu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Qiang Li
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Qitian Huang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Qian Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Xue Yu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| | - Zongbao Kent Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023 People’s Republic of China
| |
Collapse
|
7
|
Valorization of Biodiesel Byproduct Crude Glycerol for the Production of Bioenergy and Biochemicals. Catalysts 2020. [DOI: 10.3390/catal10060609] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The rapid growth of global biodiesel production requires simultaneous effective utilization of glycerol obtained as a by-product of the transesterification process. Accumulation of the byproduct glycerol from biodiesel industries can lead to considerable environment issues. Hence, there is extensive research focus on the transformation of crude glycerol into value-added products. This paper makes an overview of the nature of crude glycerol and ongoing research on its conversion to value-added products. Both chemical and biological routes of glycerol valorization will be presented. Details of crude glycerol conversion into microbial lipid and subsequent products will also be highlighted.
Collapse
|
8
|
Ma X, Gao Z, Gao M, Wu C, Wang Q. Microbial lipid production from food waste saccharified liquid under two-stage process. BIORESOURCE TECHNOLOGY 2019; 289:121626. [PMID: 31220765 DOI: 10.1016/j.biortech.2019.121626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to clarify the composition changes of food waste after being placed for few days and propose a two-stage fermentation method to effectively convert food waste saccharified liquid (FWSL) into lipids by Rhodosporidium toruloides. Food waste generally needs 3-5 days to be transported and stored before treatment. The lactic acid concentration of FWSL produced from 5-days-placed-at-room-temperature food waste reached to 15 g/L. Lactic acid promoted yeast proliferation, and its main mechanism was the conversion of lactic acid into pyruvic acid, which could provide energy for yeast growth through TCA cycle. The optimal lipid concentration in the two-stage fermentation reached to 9.19 g/L, and lipid yield amounted to 0.204 g lipid/g total sugar; the values increased by 44.27% and 60.63%, respectively, when compared with those in traditional fermentation. This study could provide a strategy for food waste treatment closer to industrial production.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Zhen Gao
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ming Gao
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Chuanfu Wu
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Qunhui Wang
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
9
|
Gaboardi G, Gil de Los Santos D, Mendes L, Centeno L, Meireles T, Vargas S, Griep E, de Castro Jorge Silva A, Moreira ÂN, Conceição FR. Bioremediation and biomass production from the cultivation of probiotic Saccharomyces boulardii in parboiled rice effluent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:180-186. [PMID: 30119042 DOI: 10.1016/j.jenvman.2018.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
The parboilization of rice generates 2 L of effluent per kilogram of processed grain. Several methodologies have previously been tested with the aim of reducing the environmental impact of this effluent. The objective of this study was to evaluate the bioremediation of parboiled rice effluent supplemented with sucrose or residual glycerol from the biodiesel during the cultivation of the Saccharomyces boulardii probiotic. In the first stage of the experiment, cultures were grown in orbital shaker, and five media compositions were evaluated: 1) parboiled rice effluent; 2) effluent supplemented with 1% sucrose; 3) effluent supplemented with 3% sucrose; 4) effluent supplemented with 15 g.L-1 of biodiesel glycerol and 5) standard yeast culture medium (YM). The addition of 1% of sucrose generated the most promising results in terms of cell viability, removal of nitrogen, phosphorus and chemical oxygen demand (COD). From these results, four independent cultures were grown in a bioreactor using effluent +1% of sucrose as the medium. This assays generated a mean of 3.8 g.L-1 of biomass, 1.8 × 1011 CFU.L-1, and removal of 74% of COD and 78% of phosphorus. Therefore, the cultivation of Saccharomyces boulardii in parboiled rice effluent supplemented with 1% sucrose may represent a viable method by which the environmental impact of this effluent can be reduced while simultaneously producing probiotic culture for use in animal production.
Collapse
Affiliation(s)
- Giana Gaboardi
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900, Pelotas, RS, Brazil.
| | | | - Lantier Mendes
- Instituto Federal Sul-riograndense, Campus Pelotas, 96015-360, Pelotas, RS, Brazil
| | - Larissa Centeno
- Instituto Federal Sul-riograndense, Campus Pelotas, 96015-360, Pelotas, RS, Brazil
| | - Taiane Meireles
- Instituto Federal Sul-riograndense, Campus Pelotas, 96015-360, Pelotas, RS, Brazil
| | - Samantha Vargas
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900, Pelotas, RS, Brazil
| | - Emili Griep
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900, Pelotas, RS, Brazil
| | - Arthur de Castro Jorge Silva
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900, Pelotas, RS, Brazil
| | - Ângela Nunes Moreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900, Pelotas, RS, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
10
|
Amer NN, Elbahloul Y, Embaby AM, Hussein A. The novel oleaginous bacterium Sphingomonas sp. EGY1 DSM 29616: a value added platform for renewable biodiesel. World J Microbiol Biotechnol 2017; 33:145. [PMID: 28623565 DOI: 10.1007/s11274-017-2305-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 05/28/2017] [Indexed: 11/30/2022]
Abstract
Oleaginous microorganisms are regarded as efficient, renewable cell factories for lipid biosynthesis, a biodiesel precursor, to overwhelm the cosmopolitan energy crisis with affordable investment capital costs. Present research highlights production and characterization of lipids by a newly isolated oleaginous bacterium, Sphingomonas sp. EGY1 DSM 29616 through an eco-friendly approach. Only sweet whey [42.1% (v/v)] in tap water was efficiently used as a growth medium and lipid production medium to encourage cell growth and trigger lipid accumulation simultaneously. Cultivation of Sphingomonas sp. EGY1 DSM 29616 in shake flasks resulted in the accumulation of 8.5 g L-1 lipids inside the cells after 36 h at 30 °C. Triglycerides of C16:C18 saturated and unsaturated fatty acids showed a similar pattern to tripalmitin or triolein; deduced from gas chromatography (GC), thin layer chromatography (TLC), and Matrix-assisted laser desorption/ionization time-of-flight-mass spectra analysis (MALDI-TOF-MS) analyses. Batch cultivation 2.5 L in a laboratory scale fermenter led to 13.8 g L-1 accumulated lipids after 34 h at 30 °C. Present data would underpin the potential of Sphingomonas sp. EGY1 DSM 29616 as a novel renewable cell factory for biosynthesis of biodiesel.
Collapse
Affiliation(s)
- Nehad N Amer
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, 163 EL-Horreya Avenue, Alexandria, 21526, Egypt
| | - Yasser Elbahloul
- Faculty of Science, Botany and Microbiology Department, Alexandria University, Moharam Baik, Alexandria, 21511, Egypt
| | - Amira M Embaby
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, 163 EL-Horreya Avenue, Alexandria, 21526, Egypt.
| | - Ahmed Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, 163 EL-Horreya Avenue, Alexandria, 21526, Egypt
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
11
|
Lee JE, Vadlani PV, Min D. Sustainable Production of Microbial Lipids from Lignocellulosic Biomass Using Oleaginous Yeast Cultures. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jsbs.2017.71004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|