1
|
Yang L, Zhao H, Yuan F, Chen M, Ma N, Yin Z, Liu H, Guo Y. Computational study on the binding mechanism of allosteric drug TNO155 inhibiting SHP2 E76A. Mol Divers 2025; 29:639-653. [PMID: 38807000 DOI: 10.1007/s11030-024-10881-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/15/2024] [Indexed: 05/30/2024]
Abstract
E76A mutations of SHP2 have been reported to associate with genetic developmental diseases and cancers, and TNO155 is one of the effective inhibitors targeted to the allosteric site 1, which has already entered the clinical stage. However, the detailed binding mechanism between them still needs further clarification at micro-atomic level. In this study, the binding mechanism of TNO155 inhibiting SHP2E76A and the superiorities of TNO155 at binding affinity and dynamic interactive behavior with SHP2E76A were probed utilizing a series of computational drug design technologies. The results show that SHP2E76A forms tighter interaction with TNO155 compared to SHP099. SHP2E76A-TNO155 exhibits the largest electrostatic interaction among all complex systems, which can be manifested by the strong hydrogen bond interactions formed by two electrically charged residues, Arg111 and Glu250. Notably, in SHP2E76A-TNO155 system, Asp489 makes an additional substantial beneficial contribution. The E76A mutation brings stronger residue positive correlation and a larger conformation fluctuation between N-CH2 and PTP domains, resulting in tighter binding between TNO155 and SHP2E76A. This study offers valuable insights for the further design and development of novel SHP2E76A allosteric inhibitors.
Collapse
Affiliation(s)
- Longhua Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Huijian Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Fanru Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mengguo Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Nannan Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhili Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, 450001, China
| | - Yong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
2
|
Subair TI, Akawa OB, Soremekun OS, Olotu FA, Soliman MES. Insight into the Therapeutic Potential of a Bicyclic Hydroxypyridone Compound 2-[(2,4-Dichlorophenyl)methyl]-7-hydroxy-1,2,3,4-tetrahydro-8H-pyrido[1,2-a]pyrazin-8-one as COMT Inhibitor in the Treatment of Parkinson's Disease: A Molecular Dynamic Simulation Approach. Chem Biodivers 2021; 18:e2100204. [PMID: 34252268 DOI: 10.1002/cbdv.202100204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/12/2021] [Indexed: 11/07/2022]
Abstract
Parkinson's disease (PD) is one of the most targeted neurodegenerative diseases in clinical research. Awareness of research is due to its increasing number of affected people worldwide. The pathology of PD has been linked to several key proteins upregulation such as the catechol O-Methyltransferase (COMT). Hence, the synthesis of compounds possessing inhibitory capacity has been the frontline of research in recent years. Several compounds have been synthesized among which is the nitrocatechol. However, major limitations associated with the nitrocatechol scaffold include the inability to possess adequate CNS penetration properties and hepatic toxicity associated with the compounds. However, a series of bicyclic hydroxypyridones compounds were synthesized to evaluate their inhibitory potentials on COMT protein with compound 38 (c38) 2-[(2,4-dichlorophenyl)methyl]-7-hydroxy-1,2,3,4-tetrahydro-8H-pyrido[1,2-a]pyrazin-8-one shown to have a 40 fold increase level coverage in its IC50 over brain exposure when compared to the other synthesized compound. The molecular dynamics method was employed to understand the nature of interaction exhibited by c38. Molecular mechanics of c38 revealed a disruptive effect on the secondary structure of COMT protein. Per residue decomposition analysis revealed similar crucial residues involved in the favorable binding of c38 and tolcapone implicated its increased inhibitory capacity on COMT in preventing PD. Free binding energy (ΔGbind ) of c38 further revealed the inhibitory capacity towards COMT protein in comparison to the FDA approved tolcapone. Ligand mobility analysis of both compounds showed a timewise different mobility pattern across the simulation time frame at the active site pocket of the protein connoting the different inhibitory potency exhibited by c38 and tolcapone. Findings from this study revealed optimization of c38 could facilitate the discovery of new compounds with enhanced inhibitory properties towards COMT in treating PD.
Collapse
Affiliation(s)
- Temitayo I Subair
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Oluwole B Akawa
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa.,Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado, Ekiti State, Nigeria
| | - Opeyemi S Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
3
|
Obakachi VA, Kushwaha ND, Kushwaha B, Mahlalela MC, Shinde SR, Kehinde I, Karpoormath R. Design and synthesis of pyrazolone-based compounds as potent blockers of SARS-CoV-2 viral entry into the host cells. J Mol Struct 2021; 1241:130665. [PMID: 34007088 PMCID: PMC8118388 DOI: 10.1016/j.molstruc.2021.130665] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/26/2021] [Accepted: 05/09/2021] [Indexed: 11/24/2022]
Abstract
SARS-CoV-2 are enveloped positive-stranded RNA viruses that replicate in the cytoplasm. It relies on the fusion of their envelope with the host cell membrane to deliver their nucleocapsid into the host cell. The spike glycoprotein (S) mediates virus entry into cells via the human Angiotensin-converting enzyme 2 (hACE2) protein located on many cell types and tissues' outer surface. This study, therefore, aimed to design and synthesize novel pyrazolone-based compounds as potential inhibitors that would interrupt the interaction between the viral spike protein and the host cell receptor to prevent SARS-CoV 2 entrance into the cell. A series of pyrazolone compounds as potential SARS-CoV-2 inhibitors were designed and synthesized. Employing computational techniques, the inhibitory potentials of the designed compounds against both spike protein and hACE2 were evaluated. Results of the binding free energy from the in-silico analysis, showed that three compounds (7i, 7k and 8f) and six compounds (7b, 7h, 7k, 8d, 8g, and 8h) showed higher and better binding high affinity to SARS-CoV-2 Sgp and hACE-2, respectively compared to the standard drugs cefoperazone (CFZ) and MLN-4760. Furthermore, the outcome of the structural analysis of the two proteins upon binding of the inhibitors showed that the two proteins (SARS-CoV-2 Sgp and hACE-2) were stable, and the structural integrity of the proteins was not compromised. This study suggests pyrazolone-based compounds might be potent blockers of the viral entry into the host cells.
Collapse
Affiliation(s)
- Vincent A Obakachi
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Babita Kushwaha
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Mavela Cleopus Mahlalela
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Suraj Raosaheb Shinde
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Idowu Kehinde
- School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
4
|
Ezaj MMA, Junaid M, Akter Y, Nahrin A, Siddika A, Afrose SS, Nayeem SMA, Haque MS, Moni MA, Hosen SMZ. Whole proteome screening and identification of potential epitopes of SARS-CoV-2 for vaccine design-an immunoinformatic, molecular docking and molecular dynamics simulation accelerated robust strategy. J Biomol Struct Dyn 2021; 40:6477-6502. [PMID: 33586620 DOI: 10.1080/07391102.2021.1886171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the most cryptic pandemic outbreak of the 21st century, has gripped more than 1.8 million people to death and infected almost eighty six million. As it is a new variant of SARS, there is no approved drug or vaccine available against this virus. This study aims to predict some promising cytotoxic T lymphocyte epitopes in the SARS-CoV-2 proteome utilizing immunoinformatic approaches. Firstly, we identified 21 epitopes from 7 different proteins of SARS-CoV-2 inducing immune response and checked for allergenicity and conservancy. Based on these factors, we selected the top three epitopes, namely KAYNVTQAF, ATSRTLSYY, and LTALRLCAY showing functional interactions with the maximum number of MHC alleles and no allergenicity. Secondly, the 3D model of selected epitopes and HLA-A*29:02 were built and Molecular Docking simulation was performed. Most interestingly, the best two epitopes predicted by docking are part of two different structural proteins of SARS-CoV-2, namely Membrane Glycoprotein (ATSRTLSYY) and Nucleocapsid Phosphoprotein (KAYNVTQAF), which are generally target of choice for vaccine designing. Upon Molecular Docking, interactions between selected epitopes and HLA-A*29:02 were further validated by 50 ns Molecular Dynamics (MD) simulation. Analysis of RMSD, Rg, SASA, number of hydrogen bonds, RMSF, MM-PBSA, PCA, and DCCM from MD suggested that ATSRTLSYY is the most stable and promising epitope than KAYNVTQAF epitope. Moreover, we also identified B-cell epitopes for each of the antigenic proteins of SARS CoV-2. Findings of our work will be a good resource for wet lab experiments and will lessen the timeline for vaccine construction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Muzahid Ahmed Ezaj
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh.,Reverse Vaccinology Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Chattogram, Bangladesh
| | - Md Junaid
- Reverse Vaccinology Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Chattogram, Bangladesh.,Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, BCSIR Laboratories Chattogram, Bangladesh Council of Scientific and Industrial Research, Chattogram, Bangladesh
| | - Yeasmin Akter
- Reverse Vaccinology Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Chattogram, Bangladesh.,Department of Biotechnology & Genetic Engineering, Noakhali Science & Technology University, Noakhali, Bangladesh
| | - Afsana Nahrin
- Department of Pharmacy, University of Science and Technology Chittagong, Chattogram, Bangladesh
| | - Aysha Siddika
- Reverse Vaccinology Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Chattogram, Bangladesh.,Department of Chemistry, University of Chittagong, Chattogram, Bangladesh
| | - Syeda Samira Afrose
- Reverse Vaccinology Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Chattogram, Bangladesh.,Department of Chemistry, University of Chittagong, Chattogram, Bangladesh
| | - S M Abdul Nayeem
- Reverse Vaccinology Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Chattogram, Bangladesh.,Department of Chemistry, University of Chittagong, Chattogram, Bangladesh
| | - Md Sajedul Haque
- Department of Chemistry, University of Chittagong, Chattogram, Bangladesh
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - S M Zahid Hosen
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, BCSIR Laboratories Chattogram, Bangladesh Council of Scientific and Industrial Research, Chattogram, Bangladesh.,Pancreatic Research Group, South Western Sydney Clinical School, and Ingham Institute for Applied Medical Research, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
5
|
Du S, Lu XH, Li WY, Li LP, Ma YC, Zhou L, Wu JW, Ma Y, Wang RL. Exploring the dynamic mechanism of allosteric drug SHP099 inhibiting SHP2 E69K. Mol Divers 2021; 25:1873-1887. [PMID: 33392964 DOI: 10.1007/s11030-020-10179-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
The E69K mutation is one of the most frequent protein tyrosine phosphatase-2 (SHP2) mutations in leukemia, and it can cause the increase in the protein activity. Recent studies have shown that the E69K mutation was fairly sensitive to the allosteric inhibitor of SHP2 (SHP099). However, the molecular mechanism of the allosteric drug SHP099 inhibiting SHP2E69K remains unclear. Thus, the molecular dynamic simulations and the post-dynamics analyses (RMSF, PCA, DCCM, RIN and the binding free energies) for SHP2WT, SHP2WT-SHP099, SHP2E69K and SHP2E69K-SHP099 were carried out, respectively. Owing to the strong binding affinity of SHP099 to residues Thr219 and Arg220, the flexibility of linker region (residues Val209-Arg231) was reduced. Moreover, the presence of SHP099 kept the autoinhibition state of the SHP2 protein through enhancing the interactions between the linker region and Q loop in PTP domain, such as Thr219/Val490, Thr219/Asn491, Arg220/Ile488 and Leu254/Asn491. In addition, it was found that the residues (Thr219, Arg220, Leu254 and Asn491) might be the key residues responsible for the conformational changes of protein. Overall, this study may provide an important basis for understanding how the SHP099 effectively inhibited the SHP2E69K activity at the molecular level.
Collapse
Affiliation(s)
- Shan Du
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xin-Hua Lu
- New Drug Research & Development Center of North China Pharmaceutical Group Corporation, Key Laboratory for New Drug Screening Technology of Shijiazhuang City, National Microbial Medicine Engineering & Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Shijiazhuang, 050015, Hebei, China
| | - Wei-Ya Li
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Li-Peng Li
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yang-Chun Ma
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Liang Zhou
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Jing-Wei Wu
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Ying Ma
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Run-Ling Wang
- Tianjin Key Laboratory On Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
6
|
Exploring the mechanism of the potent allosteric inhibitor compound2 on SHP2 WT and SHP2 F285S by molecular dynamics study. J Mol Graph Model 2020; 103:107807. [PMID: 33338846 DOI: 10.1016/j.jmgm.2020.107807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/23/2022]
Abstract
Abnormal activation of Ras/MAPK signaling pathway could trigger excessive cell division. Src-homology 2 (SH2) domain-containing protein tyrosine phosphatase (SHP2) could promote Ras/MAPK activation by integrating growth factor signals. Thus, SHP2 inhibitors had become a hot topic in the treatment of cancer. SHP2F285S, mutation in SHP2, was detected in leukemia variants. The compound 2 (3-benzyl-8-chloro-2-hydroxy-4H-benzo[4,5]thiazolo[3,2-a]pyrimidin-4-one) had been reported that it was a potent allosteric inhibitor of both SHP2 wild type (SHP2WT) and the F285S mutant (SHP2F285S). However, the mechanism of inhibition remained to be further discovered. Herein, molecular docking and molecular dynamic (MD) simulation were performed to explain the inhibition mechanism of compound 2 on SHP2WT and SHP2F285S. Overall, the molecular docking analysis revealed that compound 2 maintained the "close" structure of SHP2 protein probably by locking the C-SH2 and PTP domain. Next, post-analysis demonstrated that compound 2 might make TYR66-GLU76 of D'E-loop in N-SH2 and GLU258-LYS266 of B'C-loop, HIS458-ARG465 of P-loop, VAL497-THR507 of Q-loop in PTP domain regions tightly connect and much easier maintain "self-inhibited" conformation of SHP2F285S-compound2 than that of SHP2WT-compound2. Importantly, GLU76 of D'E-loop could play a vital role in inhibition of SHP2WT-compound2 and SHP2F285S-compound2. This work provided a reliable clue to develop novel inhibitors for leukemia related to SHP2F285S.
Collapse
|
7
|
Mitra R, Ayyannan SR. Small-Molecule Inhibitors of Shp2 Phosphatase as Potential Chemotherapeutic Agents for Glioblastoma: A Minireview. ChemMedChem 2020; 16:777-787. [PMID: 33210828 DOI: 10.1002/cmdc.202000706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/13/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is a dreadful cancer characterised by poor prognosis, low survival rate and difficult clinical correlations. Several signalling pathways and molecular mediators are known to precipitate GBM, and small-molecular targets of these mediators have become a favoured thrust area for researchers to develop potent anti-GBM drugs. Shp2, an important phosphatase of the nonreceptor type protein tyrosine phosphatase (PTPN) subfamily is responsible for master regulation of several such signalling pathways in normal and glioma cells. Thus, inhibition of Shp2 is a logical strategy for the design and development of anti-neoplastic drugs against GBM. Though tapping the full potential of Shp2 binding sites has been challenging, nevertheless, many synthetic and natural scaffolds have been documented as possessing potent and selective anti-Shp2 activities in biochemical and cellular assays, through either active-site or allosteric binding. Most of these scaffolds share a few common pharmacophoric features, a thorough study of which is useful in paving the way for the design and development of improved Shp2 inhibitors. This minireview summarizes the current scenario of potent small-molecule Shp2 inhibitors and emphasizes the anti-GBM potential of some important scaffolds that have shown promising GBM-specific activity in in vitro and in vivo models, thus proving their efficacy in GBM therapy. This review could guide researchers to design new and improved anti-Shp2 pharmacophores and develop them as anti-GBM agents by employing GBM-centric drug-discovery protocols.
Collapse
Affiliation(s)
- Rangan Mitra
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| | - Senthil R Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
8
|
Tripathi RKP, Ayyannan SR. Emerging chemical scaffolds with potential SHP2 phosphatase inhibitory capabilities - A comprehensive review. Chem Biol Drug Des 2020; 97:721-773. [PMID: 33191603 DOI: 10.1111/cbdd.13807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
The drug discovery panorama is cluttered with promising therapeutic targets that have been deserted because of inadequate authentication and screening failures. Molecular targets formerly tagged as "undruggable" are nowadays being more cautiously cross-examined, and whilst they stay intriguing, numerous targets are emerging more accessible. Protein tyrosine phosphatases (PTPs) excellently exemplifies a class of molecular targets that have transpired as druggable, with several small molecules and antibodies recently turned available for further development. In this respect, SHP2, a PTP, has emerged as one of the potential targets in the current pharmacological research, particularly for cancer, due to its critical role in various signalling pathways. Recently, few molecules with excellent potency have entered clinical trials, but none could reach the clinic. Consequently, search for novel, non-toxic, and specific SHP2 inhibitors are on purview. In this review, general aspects of SHP2 including its structure and mechanistic role in carcinogenesis have been presented. It also sheds light on the development of novel molecular architectures belonging to diverse chemical classes that have been proposed as SHP2-specific inhibitors along with their structure-activity relationships (SARs), stemming from chemical, mechanism-based and computer-aided studies reported since January 2015 to July 2020 (excluding patents), focusing on their potency and selectivity. The encyclopedic facts and discussions presented herein will hopefully facilitate researchers to design new ligands with better efficacy and selectivity against SHP2.
Collapse
Affiliation(s)
- Rati Kailash Prasad Tripathi
- Department of Pharmaceutical Science, Sushruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar, Assam, India.,Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
9
|
Kehinde I, Ramharack P, Nlooto M, Gordon M. Molecular dynamic mechanism(s) of inhibition of bioactive antiviral phytochemical compounds targeting cytochrome P450 3A4 and P-glycoprotein. J Biomol Struct Dyn 2020; 40:1037-1047. [PMID: 33063648 DOI: 10.1080/07391102.2020.1821780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
P-glycoprotein (ABCB1) and cytochrome P450 3A4 (CYP3A4) metabolize almost all known human immunodeficiency virus' protease inhibitor drugs (PIs). Over induction of these proteins' activities has been linked to rapid metabolism of PIs which are then pumped out of the circulatory system, eventually leading to drug-resistance in HIV-positive patients. This study aims to determine, with the use of computational tools, the inhibitory potential of four phytochemical compounds (PCs) (epigallocatechin gallate (EGCG), kaempferol-7-glucoside (K7G), luteolin (LUT) and ellagic acid (EGA)) in inhibiting the activities of these drug-metabolizing proteins. The comparative analysis of the MM/GBSA results revealed that the binding affinity (ΔGbind) of EGCG and K7G for CYP3A4 and ABCB1 are higher than LUT and EGA and fall between the ΔGbind of the inhibitors of CYP3A4 and ABCB1 (Ritonavir (strong inhibitor) and Lopinavir (moderate inhibitor)). The structural analysis (RMSD, RMSF, RoG and protein-ligand interaction plots) also confirmed that EGCG and K7G showed similar inhibitory activities with the inhibitors. The study has shown that EGCG and K7G have inhibitory activities against the two proteins and assumes they could decrease intracellular efflux of PIs, consequently increasing the optimal concentration of PIs in the systemic circulation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Idowu Kehinde
- KwaZulu-Natal Research, Innovation and Sequencing Platform (KRISP)/Genomics Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Pritika Ramharack
- Discipline of Pharmacy, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Manimbulu Nlooto
- Discipline of Pharmacy, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Department of Pharmaceutical Sciences, Healthcare Sciences, University of Limpopo, Durban, South Africa
| | - Michelle Gordon
- KwaZulu-Natal Research, Innovation and Sequencing Platform (KRISP)/Genomics Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
10
|
Farrokhzadeh A, Badichi Akher F, Olotu FA, Van Heerden FR. Impact of HEC72702 chirality on the selective inhibition of hepatitis B virus capsid dimer: A dynamics-structure-energetics perspective. Chem Biol Drug Des 2020; 97:167-183. [PMID: 32757484 DOI: 10.1111/cbdd.13771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/18/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022]
Abstract
Chirality in drug design has been attracting wide interests and attention over the years based on its innate potentials of enhancing the selectivity and prowess of therapeutic molecules. This approach was fundamental to the recent design of two inhibitors, where (R,R)-HEC72702 exhibited higher potency inhibition against hepatitis B virus capsid (HBVC) than (R,S)-HEC72702. Nevertheless, the detailed molecular mechanism has remained unresolved. Here, we apply multiple computational approaches to explore, validate, and differentiate the binding modes of (R,R) and (R,S)-HEC72702 and to explain the systematic roles mediated by chirality on the distinctive inhibition of HBVC dimer (HBVCd). Our findings revealed that chirality change from R,S to R,R engenders variations in the position of the propanoic acid group of HEC72702 toward the α5' and C-TER' region of HBVCd chain B which could explain the higher inhibitory affinity of (R,R)-HEC72702. Estimated binding free energies revealed a good correlation with bioactivity data. Moreover, analysis of energy decomposition revealed the prominent effects of van der Waals interactions in the binding process of both compounds to HBVCd. Furthermore, hierarchical clustering of residue-based energetic contributions suggested two hot-spot residues W125´ and F156´ play crucial roles in the systematic motions of the propanoic acid group toward chain B.
Collapse
Affiliation(s)
- Abdolkarim Farrokhzadeh
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Farideh Badichi Akher
- Department of Computer Science, University of Cape Town, Cape Town, South Africa.,Department of Chemistry, University of Cape Town, Cape Town, South Africa
| | - Fisayo A Olotu
- Molecular Bio-Computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Fanie R Van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
11
|
Liu WS, Wang RR, Li WY, Rong M, Liu CL, Ma Y, Wang RL. Investigating the reason for loss-of-function of Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) caused by Y279C mutation through molecular dynamics simulation. J Biomol Struct Dyn 2019; 38:2509-2520. [DOI: 10.1080/07391102.2019.1634641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Wen-Shan Liu
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Rui-Rui Wang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Wei-Ya Li
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Mei Rong
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Chi-Lu Liu
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Ying Ma
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Run-Ling Wang
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| |
Collapse
|