1
|
Wang B, Bian C, Lu X, Ma Y, Li N, Xiong D, Xu X, Yang Z, Zhang H, Guan T. Laccase immobilized on magnetic nanoparticles for the degradation of imidacloprid: Based on multi-spectroscopy and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 333:125888. [PMID: 39978182 DOI: 10.1016/j.saa.2025.125888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
As a typical class of environmental endocrine disruptors, imidacloprid (IMI) poses a potential threat to the sustainable survival and reproduction of living beings and human beings. Consequently, it is crucial to establish an efficient degradation method to remove imidacloprid from the environment. The present study aimed to investigate the immobilized laccase for the detoxification of imidacloprid via multi-spectroscopy and molecular docking. Herein, laccase was immobilized on magnetic nanoparticles (NiFe2O4 NPs) using a novel immobilization technique based on glutaraldehyde cross-linking polymerization. A single factor experiment approach was used to optimize the immobilization conditions, which included temperature, pH, enzyme concentration, and reaction time. Notably, the optimal condition was determined as 50℃, pH 4, laccase concentration of 1.0 mg/mL and 1.5 h. Based on the immobilization conditions, the degradation efficiency of immobilized laccase was 41.92 % after 24 h. Following eight degradations, the immobilized laccase's relative activity stayed at 34.09 % of its initial activity, demonstrating exceptional operational stability and reusability. Moreover, the binding free energy between imidacloprid and laccase was calculated on the basis of molecular docking, as -7.2 kcal/mol. This study provides experimental techniques and theoretical references for the biological digestion of hazardous pesticide residues in the environment. In addition, this study improved the shortcomings of free laccase, provided an environmentally friendly and efficient method for the degradation of imidacloprid.
Collapse
Affiliation(s)
- Bo Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127 China
| | - Canfeng Bian
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127 China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009 China
| | - Yue Ma
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127 China
| | - Ning Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127 China
| | - Dan Xiong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127 China
| | - Xuechao Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127 China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127 China.
| | - Han Zhang
- School of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300 China
| | - Tianzhu Guan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127 China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou University, Yangzhou 225127 China.
| |
Collapse
|
2
|
Wu X, Cai C, Cen Q, Fu G, Lu X, Zheng H, Zhang Q, Cui X, Liu Y. Efficient catalytic removal of phenolic pollutants by laccase from Coriolopsis gallica: Binding interaction and polymerization mechanism. Int J Biol Macromol 2024; 279:135272. [PMID: 39226979 DOI: 10.1016/j.ijbiomac.2024.135272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Laccase is a green catalyst that can efficiently catalyze phenolic pollutants, and its catalytic efficiency is closely related to the interaction between enzyme and substrates. To investigate the binding effects between enzyme and phenolic pollutants, phenol, p-chlorophenol, and bisphenol A were used as substrates in this study. We focused on the removal and catalytic mechanism of these pollutants in water using yellow laccase derived from Coriolopsis gallica. The enzymatic catalytic products were characterized using Ultraviolet-Visible Absorption Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), and High-Resolution Mass Spectrometry (HRMS), and the catalytic mechanism of laccase on phenolic pollutants was further explored by molecular docking. Based on the structural characterization and molecular docking results, the possible polymerization pathways of these phenolic compounds were speculated. Laccase catalyzed phenol to produce phenolic hydroxyl radicals, their para-radicals, and ortho-radicals, which polymerized to form oligomers linked by benzene‑oxygen-benzene and benzene-benzene. P-chlorophenol produced phenolic hydroxyl radicals and their ortho-radicals, polymerizing to form oligomers connected by benzene‑oxygen-benzene or benzene-benzene. The CC bond of the isopropyl group of bisphenol A broke to formed an intermediate product, which was further polymerized to formed a benzene‑oxygen-benzene linked oligomer.
Collapse
Affiliation(s)
- Xiaodan Wu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China
| | - Changjun Cai
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qingjing Cen
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China.
| | - Xuan Lu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hongli Zheng
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
3
|
Ali M, Bhardwaj P, Ishqi HM, Shahid M, Islam A. Laccase Engineering: Redox Potential Is Not the Only Activity-Determining Feature in the Metalloproteins. Molecules 2023; 28:6209. [PMID: 37687038 PMCID: PMC10488915 DOI: 10.3390/molecules28176209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023] Open
Abstract
Laccase, one of the metalloproteins, belongs to the multicopper oxidase family. It oxidizes a wide range of substrates and generates water as a sole by-product. The engineering of laccase is important to broaden their industrial and environmental applications. The general assumption is that the low redox potential of laccases is the principal obstacle, as evidenced by their low activity towards certain substrates. Therefore, the primary goal of engineering laccases is to improve their oxidation capability, thereby increasing their redox potential. Even though some of the determinants of laccase are known, it is still not entirely clear how to enhance its redox potential. However, the laccase active site has additional characteristics that regulate the enzymes' activity and specificity. These include the electrostatic and hydrophobic environment of the substrate binding pocket, the steric effect at the substrate binding site, and the orientation of the binding substrate with respect to the T1 site of the laccase. In this review, these features of the substrate binding site will be discussed to highlight their importance as a target for future laccase engineering.
Collapse
Affiliation(s)
- Misha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (M.A.); (P.B.)
| | - Priyanka Bhardwaj
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (M.A.); (P.B.)
| | - Hassan Mubarak Ishqi
- Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL 33136, USA;
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India; (M.A.); (P.B.)
| |
Collapse
|
4
|
Hernik D, Szczepańska E, Brenna E, Patejuk K, Olejniczak T, Strzała T, Boratyński F. Trametes hirsuta as an Attractive Biocatalyst for the Preparative Scale Biotransformation of Isosafrole into Piperonal. Molecules 2023; 28:molecules28083643. [PMID: 37110877 PMCID: PMC10142777 DOI: 10.3390/molecules28083643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Piperonal is a compound of key industrial importance due to its attractive olfactory and biological properties. It has been shown that among the fifty-six various fungal strains tested, the ability to cleave the toxic isosafrole into piperonal through alkene cleavage is mainly found in strains of the genus Trametes. Further studies involving strains isolated directly from different environments (decaying wood, fungal fruiting bodies, and healthy plant tissues) allowed the selection of two Trametes strains, T. hirsuta Th2_2 and T. hirsuta d28, as the most effective biocatalysts for the oxidation of isosafrole. The preparative scale of biotransformation with these strains provided 124 mg (conv. 82%, isolated yield 62%) and 101 mg (conv. 69%, isolated yield 50.5%) of piperonal, respectively. Due to the toxic impact of isosafrole on cells, preparative scale processes with Trametes strains have not yet been successfully performed and described in the literature.
Collapse
Affiliation(s)
- Dawid Hernik
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Ewa Szczepańska
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Elisabetta Brenna
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta" Politecnico di Milano, Via Mancinelli 7, I-20131 Milan, Italy
| | - Katarzyna Patejuk
- Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, Grunwald Square 24A, 50-363 Wrocław, Poland
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Tomasz Strzała
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, ul. Kozuchowska 7, 51-631 Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
5
|
Tišma M, Žnidaršič-Plazl P, Šelo G, Tolj I, Šperanda M, Bucić-Kojić A, Planinić M. Trametes versicolor in lignocellulose-based bioeconomy: State of the art, challenges and opportunities. BIORESOURCE TECHNOLOGY 2021; 330:124997. [PMID: 33752945 DOI: 10.1016/j.biortech.2021.124997] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Although Trametes versicolor is one of the most investigated white-rot fungi, the industrial application of this fungus and its metabolites is still far from reaching its full potential. This review aims to highlight the opportunities and challenges for the industrial use of T. versicolor according to the principles of circular bioeconomy. The use of this fungus can contribute significantly to the success of efforts to valorize lignocellulosic waste biomass and industrial lignocellulosic byproducts. Various techniques of T. versicolor cultivation for enzyme production, food and feed production, wastewater treatment, and biofuel production are listed and critically evaluated, highlighting bottlenecks and future perspectives. Applications of T. versicolor crude laccase extracts in wastewater treatment, removal of lignin from lignocellulose, and in various biotransformations are analyzed separately.
Collapse
Affiliation(s)
- Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia.
| | - Polona Žnidaršič-Plazl
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Gordana Šelo
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia
| | - Ivana Tolj
- Josip Juraj Strossmayer University of Osijek, University Hospital Center of Osijek, Clinical of Internal Medicine, Department of Nephrology, Josipa Hutlera 4, HR-31000 Osijek, Croatia
| | - Marcela Šperanda
- Josip Juraj Strossmayer University of Osijek, Faculty of Agrobiotechnical Sciences Osijek, Vladimira Preloga 1, HR - 31000 Osijek, Croatia
| | - Ana Bucić-Kojić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia
| | - Mirela Planinić
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, HR-31000 Osijek, Croatia
| |
Collapse
|
6
|
Xie P, Fan L, Huang L, Zhang C. Oxidative polymerization of hydroxytyrosol catalyzed by laccase, tyrosinase or horseradish peroxidase: influencing factors and molecular simulations. J Biomol Struct Dyn 2020; 39:5486-5497. [DOI: 10.1080/07391102.2020.1801512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pujun Xie
- Institute of New Technology of Forestry, Chinese Academy of Forestry, Beijing, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory on Forest Chemical Engineering, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, China
| | - Linlin Fan
- Institute of Agro-product Processing, JAAS, Nanjing, China
| | - Lixin Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory on Forest Chemical Engineering, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, China
| | - Caihong Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory on Forest Chemical Engineering, National Forestry and Grassland Administration, Key Laboratory of Biomass Energy and Material, Nanjing, China
| |
Collapse
|