1
|
Kou P, Zhang YC, Wang H, Mo LL, Gu JJ, Yu F. NO Activates the Triterpenoid Biosynthetic Pathway in Inonotus obliquus Through Multilevel Signaling Regulation to Enhance Its Production. Int J Mol Sci 2025; 26:4561. [PMID: 40429706 PMCID: PMC12110904 DOI: 10.3390/ijms26104561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Triterpenoids are the bioactive components in Inonotus obliquus with extensive medicinal prospects, but their low content in fermentation production is the main limiting factor for their application. This study focuses on nitric oxide (NO), an important signaling molecule within organisms, aiming to explore its inducing effect on the synthesis of triterpenes in I. obliquus and the potential signaling transduction mechanisms involved. Compared with the control group, the content of representative triterpenoid betulin increased by 70.59% after adding the NO donor sodium nitroprusside. Gene expression level detection revealed that NO mainly promotes its biosynthesis by activating the transcription of key enzyme genes in the downstream pathway of betulin biosynthesis, thereby increasing its abundance. Tracing upstream, the NO signal was found to induce the upregulation of genes related to cellular antioxidant and calcium ion signaling pathways. Notably, IoCAMP responded strongly to the NO signal, participating in the regulation of cytoplasmic Ca2+ concentration by altering the Ca2+ concentration of mitochondria together with IoCATP and IoCALM. Additionally, the signaling of changes in Ca2+ concentrations is likely to crosstalk with the reactive oxygen species (ROS) signaling pathway. The increase in enzyme activity of IoNOX after NO induction confirmed the activation of the ROS signaling pathway. It works in synergy with IoSOD and IoCAT to reduce oxidative damage and promote downstream triterpenoid biosynthesis. This study not only contributes to clarify the signaling pathways regulating NO-mediated triterpenoid biosynthesis but also provides a theoretical basis for the efficient production of triterpenoid active components in I. obliquus.
Collapse
Affiliation(s)
- Ping Kou
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | | | | | | | | | | |
Collapse
|
2
|
Chen HJ, Chen YS, Lin KM, Tsai SW, Liao MJ, Yeh CS, Liu SL. Comparison of the Controlled Atmosphere Treatment for Submerged and Solid-State Fermentation of Inonotus obliquus. Foods 2024; 13:2275. [PMID: 39063359 PMCID: PMC11275954 DOI: 10.3390/foods13142275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, a controlled atmosphere (CA) treatment was used in the submerged (SM) and solid-state (SS) fermentation of Inonotus obliquus to determine the optimal conditions. The goal was to accelerate the artificial fermentation to obtain I. obliquus as an ingredient for dietary supplements. The results indicated that when CA treatment was used, the SM and SS fermentation of I. obliquus yielded polysaccharide and betulinic acid contents 2-2.5 times higher than those obtained when such treatment was not used. The two fermentation methods yielded similar outcomes in terms of DPPH scavenging ability, bioactivity, and antioxidant activity. Although SS fermentation yielded highly bioactive fruiting bodies when the period of fermentation was extended to 60 days, the mycelia produced by SM reached a similar bioactivity quality with only 30 days of fermentation. It was indicated that SM fermentation is more economically feasible than SS fermentation in the production of I. obliquus.
Collapse
Affiliation(s)
- Hsin-Jung Chen
- Department of Food Science & Technology, Central Taiwan University of Science and Technology, Beitun District, Taichung 406, Taiwan
| | - Yuh-Shuen Chen
- Department of Food Science and Technology, Hungkuang University, Shalu District, Taichung 433, Taiwan
| | - Kuo-Min Lin
- Department of Food Science and Technology, Chia Nan University of Pharmacy & Science, Rende District, Tainan 717, Taiwan
| | - Shuo-Wen Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, South District, Taichung 402, Taiwan
| | - Mei-Jine Liao
- Department of Food Science and Biotechnology, National Chung Hsing University, South District, Taichung 402, Taiwan
| | - Chia-Sheng Yeh
- Department of Hospitality Management, Southern Taiwan University of Science and Technology, Yungkang District, Tainan 710, Taiwan
| | - Shih-Lun Liu
- Department of Food Science and Technology, Hungkuang University, Shalu District, Taichung 433, Taiwan
- Department of Food Science and Biotechnology, National Chung Hsing University, South District, Taichung 402, Taiwan
- Department of Nutrition, China Medical University, Beitun District, Taichung 404, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Wufeng District, Taichung 413, Taiwan
| |
Collapse
|
3
|
Hua L, Shi H, Lin Q, Wang H, Gao Y, Zeng J, Lou K, Huo X. Selection and Genetic Analysis of High Polysaccharide-Producing Mutants in Inonotus obliquus. Microorganisms 2024; 12:1335. [PMID: 39065103 PMCID: PMC11278842 DOI: 10.3390/microorganisms12071335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Inonotus obliquus, a medicinal fungus, has garnered significant attention in scientific research and medical applications. In this study, protoplasts of the I. obliquus HS819 strain were prepared using an enzymatic method and achieved a regeneration rate of 5.83%. To enhance polysaccharide production of I. obliquus HS819, atmospheric and room temperature plasma (ARTP) technology was employed for mutagenesis of the protoplasts. Through liquid fermentation, 32 mutant strains exhibiting diverse characteristics in morphology, color of the fermentation broth, mycelial pellet size, and biomass were screened. Secondary screening identified mutant strain A27, which showed a significant increase in polysaccharide production up to 1.67 g/L and a mycelial dry weight of 17.6 g/L, representing 137.67% and 15% increases compared to the HS819 strain, respectively. Furthermore, the fermentation period was reduced by 2 days, and subsequent subculture cultivation demonstrated stable polysaccharide production and mycelial dry weight. The genome resequencing analysis of the HS819 strain and mutant strain A27 revealed 3790 InDel sites and mutations affecting 612 functional genes associated with polysaccharide synthesis. We predict that our findings will be helpful for high polysaccharide production through genetic engineering of I. obliquus.
Collapse
Affiliation(s)
- Lanlan Hua
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| | - Hongling Shi
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| | - Qing Lin
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| | - Haozhong Wang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yan Gao
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| | - Jun Zeng
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| | - Kai Lou
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| | - Xiangdong Huo
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| |
Collapse
|
4
|
Berovic M, Zhong JJ. Advances in Production of Medicinal Mushrooms Biomass in Solid State and Submerged Bioreactors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:125-161. [PMID: 36592190 DOI: 10.1007/10_2022_208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Production of mushroom fruit bodies using farming technology could hardly meet the increasing demand of the world market. During the last several decades, there have been various basic and applied studies on fungal physiology, metabolism, process engineering, and (pre)clinical studies. The fundamental aspects of solid-state cultivation of various kinds of medicinal mushroom mycelia in various types of bioreactors were established. Solid-state cultivation of medicinal mushrooms for their biomass and bioactive metabolites production appear very suitable for veterinary use. Development of comprehensive submerged technologies using stirred tank and airlift bioreactors is the most promising technology for fast and large-scale production of medicinal fungi biomass and their pharmaceutically active products for human need. The potentials initiate the development of new drugs and some of the most attractive over-the-counter human and veterinary remedies. This article is to overview the engineering achievements in solid state and submerged cultivations of medicinal mushrooms in bioreactors.
Collapse
Affiliation(s)
- Marin Berovic
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and Laboratory of Molecular Biochemical Engineering and Advanced Fermentation Technology, Department of Bioengineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
He H, Li Y, Fang M, Li T, Liang Y, Mei Y. Carbon Source Affects Synthesis, Structures, and Activities of Mycelial Polysaccharides from Medicinal Fungus Inonotus obliquus. J Microbiol Biotechnol 2021; 31:855-866. [PMID: 33879638 PMCID: PMC9705997 DOI: 10.4014/jmb.2102.02006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
The effects of various carbon sources on mycelial growth and polysaccharide synthesis of the medicinal fungus Inonotus obliquus in liquid fermentation were investigated. After 12-d fermentation, mycelial biomass, polysaccharide yield, and polysaccharide content were significantly higher in Glc+Lac group (glucose and lactose used as combined carbon source) than in other groups. Crude polysaccharides (CIOPs) and the derivative neutral polysaccharides (NIOPs) were obtained from mycelia fermented using Glc, fructose (Fru), Lac, or Glc+Lac as carbon source. Molecular weights of four NIOPs (termed as NIOPG, NIOPF, NIOPL, and NIOPGL) were respectively 780.90, 1105.00, 25.32, and 10.28 kDa. Monosaccharide composition analyses revealed that NIOPs were composed of Glc, Man, and Gal at different molar ratios. The NIOPs were classified as α-type heteropolysaccharides with 1→2, 1→3, 1→4, 1→6 linkages in differing proportions. In in vitro cell proliferation assays, viability of RAW264.7 macrophages was more strongly enhanced by NIOPL or NIOPGL than by NIOPG or NIOPF, and proliferation of HeLa or S180 tumor cells was more strongly inhibited by NIOPG or NIOPGL than by NIOPF or NIOPL, indicating that immune-enhancing and anti-tumor activities of NIOPs were substantially affected by carbon source. qRT-PCR analysis revealed that expression levels of phosphoglucose isomerase (PGI) and UDP-Glc 4-epimerase (UGE), two key genes involved in polysaccharide synthesis, varied depending on carbon source. Our findings, taken together, clearly demonstrate that carbon source plays an essential role in determining structure and activities of I. obliquus polysaccharides by regulating expression of key genes in polysaccharide biosynthetic pathway.
Collapse
Affiliation(s)
- Huihui He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yingying Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Mingyue Fang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Tiantian Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China,Corresponding author Phone: +27-87287705 E-mail:
| |
Collapse
|
6
|
Liu TT, Xiao H, Xiao JH, Zhong JJ. Impact of oxygen supply on production of terpenoids by microorganisms: State of the art. Chin J Chem Eng 2021; 30:46-53. [DOI: 10.1016/j.cjche.2020.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Chen H, Liou BK, Hsu KC, Chen CS, Chuang PT. Implementation of food safety management systems that meets ISO 22000:2018 and HACCP: A case study of capsule biotechnology products of chaga mushroom. J Food Sci 2020; 86:40-54. [PMID: 33330998 DOI: 10.1111/1750-3841.15553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/28/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022]
Abstract
In our study, a food safety management system was developed for a chaga mushroom biotechnology product manufacturer, with the purpose of meeting the quality demands of customers and enhancing the manufacturer's reputation. The study focused on identifying the potentially significant hazards present at each stage of the production process for chaga mushroom capsule products, and on ensuring that the biotechnology company in question has fully implemented ISO22000:2018 and the HACCP methodology. The results indicate that, in the 1 year following the implementation of ISO 22000:2018, there was a statistically significant drop (P < 0.05) in the coliforms level of the tested biotechnology product samples that started in the ninth month following implementation. The rapid screening of mycotoxin, heavy metal, and pesticide residue levels also increased monitoring intensity and strengthened the periodic rotation plan, enabling control over potential problems relating to raw materials and ensuring product quality. This finding reveals the importance and necessity of rapid screening for small- and medium-sized food industry enterprises. Furthermore, 1 year after the system's implementation, the defect rate for chaga products was also observed to have declined, and the number of process flow anomalies requiring correction was also found to have decreased significantly (P < 0.05), indicating that safety and quality levels were improving and stabilizing. If implemented over a longer period of time, the food safety management system's benefits would stand out even more, and significant improvements would be observed for more monitored items. PRACTICAL APPLICATION: Few studies have touched on food safety management systems (FSMSs) developed for capsule health food products. The enterprise examined in this study had actively worked to improve its quality system and meet its customers' needs through the implementation of the FSMSs.
Collapse
Affiliation(s)
- Hsinjung Chen
- Department of Food Science and Technology, Central Taiwan University of Science and Technology, Taichung, Taiwan, 40601, ROC.,Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, 40227, ROC.,Department of Nutrition, China Medical University, Taichung, Taiwan, 40402, ROC
| | - Bo-Kang Liou
- Department of Food Science and Technology, Central Taiwan University of Science and Technology, Taichung, Taiwan, 40601, ROC.,Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, 40227, ROC
| | - Kuo-Chiang Hsu
- Department of Nutrition, China Medical University, Taichung, Taiwan, 40402, ROC
| | - Chin-Shuh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, 40227, ROC
| | - Pei-Ting Chuang
- Institute of Food Safety and Risk Management, National Taiwan Ocean University, Keelung, Taiwan, 20224, ROC
| |
Collapse
|