1
|
Inferrera F, Marino Y, Genovese T, Cuzzocrea S, Fusco R, Di Paola R. Mitochondrial quality control: Biochemical mechanism of cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119906. [PMID: 39837389 DOI: 10.1016/j.bbamcr.2025.119906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
Mitochondria play a key role in the regulation of energy homeostasis and ATP production in cardiac cells. Mitochondrial dysfunction can trigger several pathological events that contribute to the development and progression of cardiovascular diseases. These mechanisms include the induction of oxidative stress, dysregulation of intracellular calcium cycling, activation of the apoptotic pathway, and alteration of lipid metabolism. This review focuses on the role of mitochondria in intracellular signaling associated with cardiovascular diseases, emphasizing the contributions of reactive oxygen species production and mitochondrial dynamics. Indeed, mitochondrial dysfunction has been implicated in every aspect of cardiovascular disease and is currently being evaluated as a potential target for therapeutic interventions. To treat cardiovascular diseases and improve overall heart health, it is important to better understand these biochemical systems. These findings allow the achievement of targeted therapies and preventive measures. Therefore, this review investigates different studies that demonstrate how changes in mitochondrial dynamics like fusion, fission, and mitophagy contribute to the development or worsening of disorders related to heart diseases by summarizing current research on their role.
Collapse
Affiliation(s)
- Francesca Inferrera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; Link Campus University, Via del Casale di San Pio V, 4400165 Rome, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy.
| |
Collapse
|
2
|
Yi Y, Wang G, Zhang W, Yu S, Fei J, An T, Yi J, Li F, Huang T, Yang J, Niu M, Wang Y, Xu C, Xiao ZXJ. Mitochondrial-cytochrome c oxidase II promotes glutaminolysis to sustain tumor cell survival upon glucose deprivation. Nat Commun 2025; 16:212. [PMID: 39747079 PMCID: PMC11695821 DOI: 10.1038/s41467-024-55768-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Glucose deprivation, a hallmark of the tumor microenvironment, compels tumor cells to seek alternative energy sources for survival and growth. Here, we show that glucose deprivation upregulates the expression of mitochondrial-cytochrome c oxidase II (MT-CO2), a subunit essential for the respiratory chain complex IV, in facilitating glutaminolysis and sustaining tumor cell survival. Mechanistically, glucose deprivation activates Ras signaling to enhance MT-CO2 transcription and inhibits IGF2BP3, an RNA-binding protein, to stabilize MT-CO2 mRNA. Elevated MT-CO2 increases flavin adenosine dinucleotide (FAD) levels in activating lysine-specific demethylase 1 (LSD1) to epigenetically upregulate JUN transcription, consequently promoting glutaminase-1 (GLS1) and glutaminolysis for tumor cell survival. Furthermore, MT-CO2 is indispensable for oncogenic Ras-induced glutaminolysis and tumor growth, and elevated expression of MT-CO2 is associated with poor prognosis in lung cancer patients. Together, these findings reveal a role for MT-CO2 in adapting to metabolic stress and highlight MT-CO2 as a putative therapeutic target for Ras-driven cancers.
Collapse
Affiliation(s)
- Yong Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Guoqiang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenhua Zhang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shuhan Yu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Department of Oncology & Cancer Institute, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjie Fei
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tingting An
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jianqiao Yi
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fengtian Li
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, China
| | - Ting Huang
- Department of Oncology & Cancer Institute, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jian Yang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengmeng Niu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
- Department of Oncology & Cancer Institute, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Cañadas-Garre M, Maqueda JJ, Baños-Jaime B, Hill C, Skelly R, Cappa R, Brennan E, Doyle R, Godson C, Maxwell AP, McKnight AJ. Mitochondrial related variants associated with cardiovascular traits. Front Physiol 2024; 15:1395371. [PMID: 39258111 PMCID: PMC11385366 DOI: 10.3389/fphys.2024.1395371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction Cardiovascular disease (CVD) is responsible for over 30% of mortality worldwide. CVD arises from the complex influence of molecular, clinical, social, and environmental factors. Despite the growing number of autosomal genetic variants contributing to CVD, the cause of most CVDs is still unclear. Mitochondria are crucial in the pathophysiology, development and progression of CVDs; the impact of mitochondrial DNA (mtDNA) variants and mitochondrial haplogroups in the context of CVD has recently been highlighted. Aims We investigated the role of genetic variants in both mtDNA and nuclear-encoded mitochondrial genes (NEMG) in CVD, including coronary artery disease (CAD), hypertension, and serum lipids in the UK Biobank, with sub-group analysis for diabetes. Methods We investigated 371,542 variants in 2,527 NEMG, along with 192 variants in 32 mitochondrial genes in 381,994 participants of the UK Biobank, stratifying by presence of diabetes. Results Mitochondrial variants showed associations with CVD, hypertension, and serum lipids. Mitochondrial haplogroup J was associated with CAD and serum lipids, whereas mitochondrial haplogroups T and U were associated with CVD. Among NEMG, variants within Nitric Oxide Synthase 3 (NOS3) showed associations with CVD, CAD, hypertension, as well as diastolic and systolic blood pressure. We also identified Translocase Of Outer Mitochondrial Membrane 40 (TOMM40) variants associated with CAD; Solute carrier family 22 member 2 (SLC22A2) variants associated with CAD and CVD; and HLA-DQA1 variants associated with hypertension. Variants within these three genes were also associated with serum lipids. Conclusion Our study demonstrates the relevance of mitochondrial related variants in the context of CVD. We have linked mitochondrial haplogroup U to CVD, confirmed association of mitochondrial haplogroups J and T with CVD and proposed new markers of hypertension and serum lipids in the context of diabetes. We have also evidenced connections between the etiological pathways underlying CVDs, blood pressure and serum lipids, placing NOS3, SLC22A2, TOMM40 and HLA-DQA1 genes as common nexuses.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- MRC Integrative Epidemiology Unit, Bristol Medical School (Population Health Sciences), University of Bristol Oakfield House, Belfast, United Kingdom
| | - Joaquín J Maqueda
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Blanca Baños-Jaime
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Claire Hill
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Ryan Skelly
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Ruaidhri Cappa
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Eoin Brennan
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Ross Doyle
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexander P Maxwell
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Regional Nephrology Unit, Belfast City Hospital Belfast, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| |
Collapse
|
4
|
Garcia-Medina JS, Sienkiewicz K, Narayanan SA, Overbey EG, Grigorev K, Ryon KA, Burke M, Proszynski J, Tierney B, Schmidt CM, Mencia-Trinchant N, Klotz R, Ortiz V, Foox J, Chin C, Najjar D, Matei I, Chan I, Cruchaga C, Kleinman A, Kim J, Lucaci A, Loy C, Mzava O, De Vlaminck I, Singaraju A, Taylor LE, Schmidt JC, Schmidt MA, Blease K, Moreno J, Boddicker A, Zhao J, Lajoie B, Altomare A, Kruglyak S, Levy S, Yu M, Hassane DC, Bailey SM, Bolton K, Mateus J, Mason CE. Genome and clonal hematopoiesis stability contrasts with immune, cfDNA, mitochondrial, and telomere length changes during short duration spaceflight. PRECISION CLINICAL MEDICINE 2024; 7:pbae007. [PMID: 38634106 PMCID: PMC11022651 DOI: 10.1093/pcmedi/pbae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/24/2024] [Indexed: 04/19/2024] Open
Abstract
Background The Inspiration4 (I4) mission, the first all-civilian orbital flight mission, investigated the physiological effects of short-duration spaceflight through a multi-omic approach. Despite advances, there remains much to learn about human adaptation to spaceflight's unique challenges, including microgravity, immune system perturbations, and radiation exposure. Methods To provide a detailed genetics analysis of the mission, we collected dried blood spots pre-, during, and post-flight for DNA extraction. Telomere length was measured by quantitative PCR, while whole genome and cfDNA sequencing provided insight into genomic stability and immune adaptations. A robust bioinformatic pipeline was used for data analysis, including variant calling to assess mutational burden. Result Telomere elongation occurred during spaceflight and shortened after return to Earth. Cell-free DNA analysis revealed increased immune cell signatures post-flight. No significant clonal hematopoiesis of indeterminate potential (CHIP) or whole-genome instability was observed. The long-term gene expression changes across immune cells suggested cellular adaptations to the space environment persisting months post-flight. Conclusion Our findings provide valuable insights into the physiological consequences of short-duration spaceflight, with telomere dynamics and immune cell gene expression adapting to spaceflight and persisting after return to Earth. CHIP sequencing data will serve as a reference point for studying the early development of CHIP in astronauts, an understudied phenomenon as previous studies have focused on career astronauts. This study will serve as a reference point for future commercial and non-commercial spaceflight, low Earth orbit (LEO) missions, and deep-space exploration.
Collapse
Affiliation(s)
- J Sebastian Garcia-Medina
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Karolina Sienkiewicz
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - S Anand Narayanan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Eliah G Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- BioAstra Inc, New York, NY, USA
| | - Kirill Grigorev
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Marissa Burke
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Braden Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Caleb M Schmidt
- Sovaris Aerospace, Boulder, CO 80302, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO 80302, USA
- Department of Systems Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Nuria Mencia-Trinchant
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- BioAstra Inc, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY 10021, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Deena Najjar
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Irenaeus Chan
- Washington University St. Louis Oncology Division, St. Louis, MO 63100, USA
| | - Carlos Cruchaga
- Washington University St. Louis Oncology Division, St. Louis, MO 63100, USA
| | - Ashley Kleinman
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alexander Lucaci
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Conor Loy
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Omary Mzava
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Anvita Singaraju
- Department of Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Lynn E Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Julian C Schmidt
- Sovaris Aerospace, Boulder, CO 80302, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO 80302, USA
| | - Michael A Schmidt
- Sovaris Aerospace, Boulder, CO 80302, USA
- Advanced Pattern Analysis & Human Performance Group, Boulder, CO 80302, USA
| | | | - Juan Moreno
- Element Biosciences, San Diego, CA 10055, USA
| | | | - Junhua Zhao
- Element Biosciences, San Diego, CA 10055, USA
| | | | | | | | - Shawn Levy
- Element Biosciences, San Diego, CA 10055, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Duane C Hassane
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Kelly Bolton
- Washington University St. Louis Oncology Division, St. Louis, MO 63100, USA
| | - Jaime Mateus
- Space Exploration Technologies Corporation, Hawthorne, CA 90250, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- BioAstra Inc, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, NY 10021, USA
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
5
|
Chen Y, Liang L, Wu C, Cao Z, Xia L, Meng J, Wang Z. Epigenetic Control of Vascular Smooth Muscle Cell Function in Atherosclerosis: A Role for DNA Methylation. DNA Cell Biol 2022; 41:824-837. [PMID: 35900288 DOI: 10.1089/dna.2022.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is a complex vascular inflammatory disease in which multiple cell types are involved, including vascular smooth muscle cells (VSMCs). In response to vascular injury and inflammatory stimuli, VSMCs undergo a "phenotypic switching" characterized by extracellular matrix secretion, loss of contractility, and abnormal proliferation and migration, which play a key role in the progression of atherosclerosis. DNA methylation modification is an important epigenetic mechanism that plays an important role in atherosclerosis. Studies investigating abnormal DNA methylation in patients with atherosclerosis have determined a specific DNA methylation profile, and proposed multiple pathways and genes involved in the etiopathogenesis of atherosclerosis. Recent studies have also revealed that DNA methylation modification controls VSMC function by regulating gene expression involved in atherosclerosis. In this review, we summarize the recent advances regarding the epigenetic control of VSMC function by DNA methylation in atherosclerosis and provide insights into the development of VSMC-centered therapeutic strategies.
Collapse
Affiliation(s)
- Yanjun Chen
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Lingli Liang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Chunyan Wu
- The Third Affiliated Hospital of University of South China, Hengyang, China
| | - Zitong Cao
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Linzhen Xia
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun Meng
- Functional Department, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zuo Wang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
6
|
Kuan SW, Chua KH, Tan EW, Tan LK, Loch A, Kee BP. Whole mitochondrial genome sequencing of Malaysian patients with cardiomyopathy. PeerJ 2022; 10:e13265. [PMID: 35441061 PMCID: PMC9013480 DOI: 10.7717/peerj.13265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Cardiomyopathy (CMP) constitutes a diverse group of myocardium diseases affecting the pumping ability of the heart. Genetic predisposition is among the major factors affecting the development of CMP. Globally, there are over 100 genes in autosomal and mitochondrial DNA (mtDNA) that have been reported to be associated with the pathogenesis of CMP. However, most of the genetic studies have been conducted in Western countries, with limited data being available for the Asian population. Therefore, this study aims to investigate the mutation spectrum in the mitochondrial genome of 145 CMP patients in Malaysia. Long-range PCR was employed to amplify the entire mtDNA, and whole mitochondrial genome sequencing was conducted on the MiSeq platform. Raw data was quality checked, mapped, and aligned to the revised Cambridge Reference Sequence (rCRS). Variants were named, annotated, and filtered. The sequencing revealed 1,077 variants, including 18 novel and 17 CMP and/or mitochondrial disease-associated variants after filtering. In-silico predictions suggested that three of the novel variants (m.8573G>C, m.11916T>A and m.11918T>G) in this study are potentially pathogenic. Two confirmed pathogenic variants (m.1555A>G and m.11778G>A) were also found in the CMP patients. The findings of this study shed light on the distribution of mitochondrial mutations in Malaysian CMP patients. Further functional studies are required to elucidate the role of these variants in the development of CMP.
Collapse
Affiliation(s)
- Sheh Wen Kuan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - E-Wei Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lay Koon Tan
- National Heart Institute, Kuala Lumpur, Malaysia
| | - Alexander Loch
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Boon Pin Kee
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Yang L, Hou A, Zhang X, Zhang J, Wang S, Dong J, Zhang S, Jiang H, Kuang H. TMT‐based proteomics analysis to screen potential biomarkers of Achyranthis Bidentatae Radix for osteoporosis in rats. Biomed Chromatogr 2022; 36:e5339. [DOI: 10.1002/bmc.5339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Liu Yang
- Key Laboratory of Basic and Application Research of Beiyao Heilongjiang University of Chinese Medicine, Ministry of Education Harbin China
| | - Ajiao Hou
- Key Laboratory of Basic and Application Research of Beiyao Heilongjiang University of Chinese Medicine, Ministry of Education Harbin China
| | - Xiaojuan Zhang
- Key Laboratory of Basic and Application Research of Beiyao Heilongjiang University of Chinese Medicine, Ministry of Education Harbin China
| | - Jiaxu Zhang
- Key Laboratory of Basic and Application Research of Beiyao Heilongjiang University of Chinese Medicine, Ministry of Education Harbin China
| | - Song Wang
- Key Laboratory of Basic and Application Research of Beiyao Heilongjiang University of Chinese Medicine, Ministry of Education Harbin China
| | - Jiaojiao Dong
- Key Laboratory of Basic and Application Research of Beiyao Heilongjiang University of Chinese Medicine, Ministry of Education Harbin China
| | - Shihao Zhang
- Key Laboratory of Basic and Application Research of Beiyao Heilongjiang University of Chinese Medicine, Ministry of Education Harbin China
| | - Hai Jiang
- Key Laboratory of Basic and Application Research of Beiyao Heilongjiang University of Chinese Medicine, Ministry of Education Harbin China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao Heilongjiang University of Chinese Medicine, Ministry of Education Harbin China
| |
Collapse
|
8
|
The Role of Mitochondrial DNA Mutations in Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23020952. [PMID: 35055137 PMCID: PMC8778138 DOI: 10.3390/ijms23020952] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiovascular diseases (CVD) are one of the leading causes of morbidity and mortality worldwide. mtDNA (mitochondrial DNA) mutations are known to participate in the development and progression of some CVD. Moreover, specific types of mitochondria-mediated CVD have been discovered, such as MIEH (maternally inherited essential hypertension) and maternally inherited CHD (coronary heart disease). Maternally inherited mitochondrial CVD is caused by certain mutations in the mtDNA, which encode structural mitochondrial proteins and mitochondrial tRNA. In this review, we focus on recently identified mtDNA mutations associated with CVD (coronary artery disease and hypertension). Additionally, new data suggest the role of mtDNA mutations in Brugada syndrome and ischemic stroke, which before were considered only as a result of mutations in nuclear genes. Moreover, we discuss the molecular mechanisms of mtDNA involvement in the development of the disease.
Collapse
|
9
|
Lin R, Xia Y, Liu Y, Zhang D, Xiang X, Niu X, Jiang L, Wang X, Zheng A. Comparative Mitogenomic Analysis and the Evolution of Rhizoctonia solani Anastomosis Groups. Front Microbiol 2021; 12:707281. [PMID: 34616376 PMCID: PMC8488467 DOI: 10.3389/fmicb.2021.707281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are the major energy source for cell functions. However, for the plant fungal pathogens, mitogenome variations and their roles during the host infection processes remain largely unknown. Rhizoctonia solani, an important soil-borne pathogen, forms different anastomosis groups (AGs) and adapts to a broad range of hosts in nature. Here, we reported three complete mitogenomes of AG1-IA RSIA1, AG1-IB RSIB1, and AG1-IC, and performed a comparative analysis with nine published Rhizoctonia mitogenomes (AG1-IA XN, AG1-IB 7/3/14, AG3, AG4, and five Rhizoctonia sp. mitogenomes). These mitogenomes encoded 15 typical proteins (cox1-3, cob, atp6, atp8-9, nad1-6, nad4L, and rps3) and several LAGLIDADG/GIY-YIG endonucleases with sizes ranging from 109,017 bp (Rhizoctonia sp. SM) to 235,849 bp (AG3). We found that their large sizes were mainly contributed by repeat sequences and genes encoding endonucleases. We identified the complete sequence of the rps3 gene in 10 Rhizoctonia mitogenomes, which contained 14 positively selected sites. Moreover, we inferred a robust maximum-likelihood phylogeny of 32 Basidiomycota mitogenomes, representing that seven R. solani and other five Rhizoctonia sp. lineages formed two parallel branches in Agaricomycotina. The comparative analysis showed that mitogenomes of Basidiomycota pathogens had high GC content and mitogenomes of R. solani had high repeat content. Compared to other strains, the AG1-IC strain had low substitution rates, which may affect its mitochondrial phylogenetic placement in the R. solani clade. Additionally, with the published RNA-seq data, we investigated gene expression patterns from different AGs during host infection stages. The expressed genes from AG1-IA (host: rice) and AG3 (host: potato) mainly formed four groups by k-mean partitioning analysis. However, conserved genes represented varied expression patterns, and only the patterns of rps3-nad2 and nad1-m3g18/mag28 (an LAGLIDADG endonuclease) were conserved in AG1-IA and AG3 as shown by the correlation coefficient analysis, suggesting regulation of gene repertoires adapting to infect varied hosts. The results of variations in mitogenome characteristics and the gene substitution rates and expression patterns may provide insights into the evolution of R. solani mitogenomes.
Collapse
Affiliation(s)
- Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Xia
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Yao Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Danhua Zhang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Xing Xiang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Xianyu Niu
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Linjia Jiang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Xiaolin Wang
- Agriculture College, Sichuan Agricultural University, Chengdu, China
| | - Aiping Zheng
- Agriculture College, Sichuan Agricultural University, Chengdu, China.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
| |
Collapse
|
10
|
Shaker Ardakani Z, Heidari MM, Khatami M, Bitaraf Sani M. Association of Pathogenic Missense and Nonsense Mutations in Mitochondrial COII Gene with Familial Adenomatous Polyposis (FAP). INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 9:255-265. [PMID: 33688483 PMCID: PMC7936074 DOI: 10.22088/ijmcm.bums.9.4.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/14/2020] [Indexed: 10/31/2022]
Abstract
Nuclear genetic mutations have been extensively investigated in solid tumors. However, the role of the mitochondrial genome remains uncertain. Since the metabolism of solid tumors is associated with aerobic glycolysis and high lactate production, tumors may have mitochondrial dysfunctions. Familial adenomatous polyposis (FAP) is a rare form of colorectal cancer and an autosomal dominant inherited condition that is characterized by the progress of numerous adenomatous polyps in the rectum and colon. The present study aimed at understanding the nature and effect of mitochondrial cytochrome c oxidase subunit 2 (COII) gene mutations in FAP tumorigenesis. Fifty-six (26 familial and 30 sporadic) FAP patients and 60 normal controls were enrolled in this study. COII point mutations were evaluated by PCR and direct sequencing methods, and a total of 7 mtDNA mutations were detected (3 missense, 1 nonsense, and 3 synonymous variations). Novel non-synonymous COII gene mutations were mostly in heteroplasmic state. These mutations change amino acid residues in the N-terminal and C-terminal regions of COXII. Bioinformatics analysis and three-dimensional structural modeling predicted that these missense and nonsense mutations have functional importance, and mainly affected on cytochrome c oxidase (complex IV). Also, FAP patients carried a meaningfully higher prevalence of mutations in the COII gene in comparison with healthy controls (P <0.001). Analysis of cancer-associated mtDNA mutation could be an invaluable tool for molecular assessment of FAP so that these findings can be helpful for the development of potential new biomarkers in the diagnosis of cancer for future clinical assessments.
Collapse
Affiliation(s)
| | | | - Mehri Khatami
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Morteza Bitaraf Sani
- Animal Science Research Department, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), Yazd, Iran
| |
Collapse
|
11
|
Poznyak AV, Ivanova EA, Sobenin IA, Yet SF, Orekhov AN. The Role of Mitochondria in Cardiovascular Diseases. BIOLOGY 2020; 9:biology9060137. [PMID: 32630516 PMCID: PMC7344641 DOI: 10.3390/biology9060137] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Abstract
The role of mitochondria in cardiovascular diseases is receiving ever growing attention. As a central player in the regulation of cellular metabolism and a powerful controller of cellular fate, mitochondria appear to comprise an interesting potential therapeutic target. With the development of DNA sequencing methods, mutations in mitochondrial DNA (mtDNA) became a subject of intensive study, since many directly lead to mitochondrial dysfunction, oxidative stress, deficient energy production and, as a result, cell dysfunction and death. Many mtDNA mutations were found to be associated with chronic human diseases, including cardiovascular disorders. In particular, 17 mtDNA mutations were reported to be associated with ischemic heart disease in humans. In this review, we discuss the involvement of mitochondrial dysfunction in the pathogenesis of atherosclerosis and describe the mtDNA mutations identified so far that are associated with atherosclerosis and its risk factors.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia; (A.V.P.); (E.A.I.)
| | - Ekaterina A. Ivanova
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia; (A.V.P.); (E.A.I.)
| | - Igor A. Sobenin
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, 121552 Moscow, Russia;
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System & Central Laboratory of Pathology, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan;
| | - Alexander N. Orekhov
- Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiyskaya st., 125315 Moscow, Russia
- Correspondence: ; Tel./Fax: +7-(495)-415-9594
| |
Collapse
|