1
|
Mykchaylova O, Negriyko A, Matvieieva N, Lopatko K, Poyedinok N. Photoregulation of the biosynthetic activity of fungus Inonotus obliquus using colloidal solutions of biogenic metal nanoparticles and low-intensity laser radiation. Bioengineered 2025; 16:2458371. [PMID: 39873594 PMCID: PMC11776471 DOI: 10.1080/21655979.2025.2458371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 01/30/2025] Open
Abstract
This article presents new data on the integrated use of colloidal solutions of nanoparticles and low-intensity laser radiation on the biosynthetic activity of the medicinal mushroom Inonotus obliquus in vitro. Traditional mycological methods, colloidal solutions of biogenic metals, and unique photobiological methods have also been used. It was found that colloidal solutions of nanoparticles of all metals used increased the growth characteristics of I. obliquus (55-60%), while irradiation of the fungal inoculum with laser light in a medium with nanoparticles reduced the growth activity of I. obliquus mycelia by 12.3-35.4%. Silver nanoparticles (AgNPs) in a nutrient medium suppressed the biosynthesis of extracellular polysaccharides, whereas laser irradiation in the same medium increased the synthesis of intracellular polysaccharides by 9.7 times. Magnesium nanoparticles (MgNPs) and iron nanoparticles (FeNPs) inhibited the synthesis of intracellular polysaccharides in the mycelial mass of I. obliquus. At the same time, laser irradiation of the inoculum with MgNPs, on the contrary, induced a sharp increase in the amount of polysaccharides in the culture liquid (20 times). Treatment of the inoculum in a medium with nanoparticles with a laser caused an intensification of the synthesis of flavonoids in the mycelial mass and an increase in the synthesis of melanin pigments (25-140%). The results obtained suggest the possibility of the complex use of colloidal solutions of Fe, Ag, and Mg nanoparticles and low-intensity laser radiation as environmentally friendly factors for regulating biosynthetic activity in the biotechnology of cultivating the valuable medicinal mushroom I. obliquus.
Collapse
Affiliation(s)
- Oksana Mykchaylova
- Department of Translational Medical Bioengineering, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
- M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Anatoliy Negriyko
- Department of Laser Spectroscopy, Institute of Physics of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Nadiia Matvieieva
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine
| | - Kostiantyn Lopatko
- National Academy of Science of Ukraine, National University of Life and Environmental Sciences, Kyiv, Ukraine
| | - Natalia Poyedinok
- Department of Translational Medical Bioengineering, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
| |
Collapse
|
2
|
Sysoeva MA, Prozorova IS, Sysoeva EV, Grigoryeva TV, Ismagilova RK. Characterization and Biotechnology of Three New Strains of Basidial Fungi as Promising Sources of Biologically Active Substances. BIOTECH 2025; 14:30. [PMID: 40407485 PMCID: PMC12101347 DOI: 10.3390/biotech14020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/14/2025] [Accepted: 04/23/2025] [Indexed: 05/26/2025] Open
Abstract
The study of new strains of basidiomycetes as sources of biologically active substances is a promising direction in modern biotechnology. This work aims to isolate new cultures of the fungi Daedaleopsis tricolor, Pycnoporellus fulgens and Trichaptum abietinum from natural fruiting bodies and to improve their growth conditions on solid nutrient media. The identification of fungi was performed based on their morphological features and using the Sanger sequencing method. Cultivation was carried out by placing inoculum in the middle of a Petri dish and at the edge, which provided a more comprehensive definition of the characteristics of colonies and fungus hyphae. New strains were registered in Genbank Overview. The optimal cultivation temperature was 27 °C for all studied strains. The highest radial growth was observed on synthetic medium for D. tricolor (5.26 mm/day) and T. abietinum (7.5 mm/day), and on synthetic medium with lignin for P. fulgens (2.98 mm/day). The biomass amount of D. tricolor KS11 was 133.25 mg at 9 days of cultivation, that of P. fulgens KS12 was 86.73 mg at 16 days, and that of T. abietinum KS10 was 227.33 mg at 6 days. New strains of fungi can be used to obtain biologically active substances for the food, pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Maria Alexandrovna Sysoeva
- Food Biotechnology Department, Kazan National Research Technological University, 68 Karl Marx Street, Kazan 420015, Russia; (M.A.S.); (E.V.S.)
| | - Ilyuza Shamilevna Prozorova
- Food Biotechnology Department, Kazan National Research Technological University, 68 Karl Marx Street, Kazan 420015, Russia; (M.A.S.); (E.V.S.)
| | - Elena Vladislavovna Sysoeva
- Food Biotechnology Department, Kazan National Research Technological University, 68 Karl Marx Street, Kazan 420015, Russia; (M.A.S.); (E.V.S.)
| | - Tatyana Vladimirovna Grigoryeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (T.V.G.); (R.K.I.)
| | - Ruzilya Kamilevna Ismagilova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (T.V.G.); (R.K.I.)
| |
Collapse
|
3
|
Matvieieva N, Bohdanovych T, Belokurova V, Duplij V, Shakhovsky A, Klymchuk D, Kuchuk M. Variability in growth and biosynthetic activity of Calendula officinalis hairy roots. Prep Biochem Biotechnol 2025; 55:381-391. [PMID: 39431733 DOI: 10.1080/10826068.2024.2418015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Calendula officinalis is a widespread medicinal plant with a sufficiently well-studied chemical composition. Secondary metabolites synthesized by C.officinalis plants have pharmacological value for treating numerous diseases, and various types of aseptic in vitro cultures can be used as a source of these compounds. From this perspective, hairy roots attract considerable attention for the production of bioactive chemicals, including flavonoids with antioxidant activity. This paper shows the possibility of C.officinalis hairy roots obtaining with 100% frequency by Agrobacterium rhizogenes genetic transformation. Hairy root lines differed in growth rate and flavonoid content. In particular, flavonoids were accumulated in the amount of up to 6.68 ± 0.28 mg/g of wet weight. Methyl jasmonate in the concentration of 10 µM inhibited root growth to a small extent but stimulated the synthesis of flavonoids. The antioxidant activity and the reducing power increased in the roots grown in the medium with methyl jasmonate. The strong correlation of antioxidant activity and reducing power with flavonoid content was detected. The influence of extraction conditions on the content of flavonoids in the extracts and their bioactivity was determined. The potent reducing activity of extracts from hairy roots allowed the production of silver nanoparticles, which was confirmed by transmission electron microscopy.
Collapse
Affiliation(s)
- Nadiia Matvieieva
- Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Taisa Bohdanovych
- Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Valeriia Belokurova
- Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Volodymyr Duplij
- Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Anatolii Shakhovsky
- Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro Klymchuk
- M. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Mykola Kuchuk
- Institute of Cell Biology and Genetic Engineering of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
4
|
Quercetin 3-O-(6″-O-E-caffeoyl)-β-D-glucopyranoside, a Flavonoid Compound, Promotes Melanogenesis through the Upregulation of MAPKs and Akt/GSK3β/β-Catenin Signaling Pathways. Int J Mol Sci 2023; 24:ijms24054780. [PMID: 36902210 PMCID: PMC10003212 DOI: 10.3390/ijms24054780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Quercetin 3-O-(6″-O-E-caffeoyl)-β-D-glucopyranoside is a flavonoid compound produced by various plants with reported antiprotozoal potential against E. histolytica and G. lamblia; however, its effects on skin pigment regulation have not been studied in detail. In this investigation, we discovered that quercetin 3-O-(6″-O-E-caffeoyl)-D-glucopyranoside (coded as CC7) demonstrated a more increased melanogenesis effect in B16 cells. CC7 exhibited no cytotoxicity or effective stimulating melanin content or intracellular tyrosinase activity. This melanogenic-promoting effect was accompanied by activated expression levels of microphthalmia-associated transcription factor (MITF), a key melanogenic regulatory factor, melanogenic enzymes, and tyrosinase (TYR) and tyrosinase-related protein-1 (TRP-1) and 2 (TRP-2) in the CC7-treated cells. Mechanistically, we found that CC7 exerted melanogenic effects by upregulating the phosphorylation of stress-regulated protein kinase (p38) and c-Jun N-terminal kinase (JNK). Moreover, the CC7 upregulation of phosphor-protein kinase B (Akt) and Glycogen synthase kinase-3 beta (GSK-3β) increased the content of β-catenin in the cell cytoplasm, and subsequently, it translocated into the nucleus, resulting in melanogenesis. Specific inhibitors of P38, JNK, and Akt validated that CC7 promotes melanin synthesis and tyrosinase activity by regulating the GSK3β/β-catenin signaling pathways. Our results support that the CC7 regulation of melanogenesis involves MAPKs and Akt/GSK3β/β-catenin signaling pathways.
Collapse
|
5
|
Zhang Y, Liao H, Shen D, Zhang X, Wang J, Zhang X, Wang X, Li R. Renal Protective Effects of Inonotus obliquus on High-Fat Diet/Streptozotocin-Induced Diabetic Kidney Disease Rats: Biochemical, Color Doppler Ultrasound and Histopathological Evidence. Front Pharmacol 2022; 12:743931. [PMID: 35111043 PMCID: PMC8801815 DOI: 10.3389/fphar.2021.743931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
Diabetic kidney disease (DKD) is the current leading cause of end-stage renal disease. Inonotus obliquus (chaga), a medicinal fungus, has been used in treatment of diabetes. Here, we aim to identify the renal protective effects of chaga extracts on a DKD rat model which was induced by a high-fat diet and streptozotocin injection. During the total 17-weeks experiment, the biological parameters of serum and urine were examined, and the color Doppler ultrasound of renal artery, the periodic acid-Schiff staining, and electron microscopy of kidney tissue were performed. The compositions of chaga extracts were analyzed and the intervention effects of the extracts were also observed. Compared with the normal control group, the biochemical research showed that insulin resistance was developed, blood glucose and total cholesterol were elevated, urinary protein excretion and serum creatinine levels were significantly increased in the DKD model. The ultrasound examinations confirmed the deteriorated blood flow parameters of the left renal interlobar artery in the rat models. Finally, histopathological data supported renal injury on the thickened glomerular basement membrane and fusion of the foot processes. 8 weeks intervention of chaga improved the above changes significantly, and the 100 mg/kg/d chaga group experienced significant effects compared with the 50 mg/kg/d in some parameters. Our findings suggested that Doppler ultrasound examinations guided with biochemical indicators played important roles in evaluating the renal injury as an effective, noninvasive, and repeatable method in rats. Based on biochemical, ultrasound, and histopathological evidence, we confirmed that chaga had pharmacodynamic effects on diabetes-induced kidney injury and the aforementioned effects may be related to delaying the progression of DKD.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China
| | - Hui Liao
- Department of Pharmacy, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China
| | - Dayue Shen
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Xilan Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Jufang Wang
- Department of Ultrasonic Diagnosis, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China
| | - Xiaohong Zhang
- Department of Ultrasonic Diagnosis, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China
| | - Xiaocheng Wang
- Department of Statistic and Medical Record, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, China
| |
Collapse
|
6
|
Antimicrobial Resistance and Inorganic Nanoparticles. Int J Mol Sci 2021; 22:ijms222312890. [PMID: 34884695 PMCID: PMC8657868 DOI: 10.3390/ijms222312890] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/10/2023] Open
Abstract
Antibiotics are being less effective, which leads to high mortality in patients with infections and a high cost for the recovery of health, and the projections that are had for the future are not very encouraging which has led to consider antimicrobial resistance as a global health problem and to be the object of study by researchers. Although resistance to antibiotics occurs naturally, its appearance and spread have been increasing rapidly due to the inappropriate use of antibiotics in recent decades. A bacterium becomes resistant due to the transfer of genes encoding antibiotic resistance. Bacteria constantly mutate; therefore, their defense mechanisms mutate, as well. Nanotechnology plays a key role in antimicrobial resistance due to materials modified at the nanometer scale, allowing large numbers of molecules to assemble to have a dynamic interface. These nanomaterials act as carriers, and their design is mainly focused on introducing the temporal and spatial release of the payload of antibiotics. In addition, they generate new antimicrobial modalities for the bacteria, which are not capable of protecting themselves. So, nanoparticles are an adjunct mechanism to improve drug potency by reducing overall antibiotic exposure. These nanostructures can overcome cell barriers and deliver antibiotics to the cytoplasm to inhibit bacteria. This work aims to give a general vision between the antibiotics, the nanoparticles used as carriers, bacteria resistance, and the possible mechanisms that occur between them.
Collapse
|