1
|
Wen X, Tesfay MA, Ning Y, Lin H, Liu G, Hu H, Xu X, Jiang X, Zhao C, Ren Y, Li C, Zhang C, Dong N, Song X, Lin J, Lin J. Green biotechnological synthesis of rare sugars/alcohols: D-allulose, allitol, D-tagatose, L-xylulose, L-ribose. Food Res Int 2025; 206:116058. [PMID: 40058916 DOI: 10.1016/j.foodres.2025.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025]
Abstract
Rare sugars are paid more attention because of which have the characteristics of low calorie, low absorption and excellent physiological functions. Biotechnological synthesis of rare sugars has the advantages of being green, clean, simple and economic compared to chemical synthesis. Abundant enzymes for rare sugars biosynthesis are introduced and multienzyme cascade catalytic system (MECCS) used in biosynthesis of rare sugars is highlighted in this paper. Different biosynthesis pathways of five important rare sugars (D-allulose, allitol, D-tagatose, L-xylulose, l-ribose), mainly containing isomerization/epimerization reaction (existing thermodynamic equilibrium limitation), reduction-oxidation reaction (needing expensive cofactors) and phosphorylation-dephosphorylation reaction pathways (inherent constraint of thermodynamic equilibrium and requirement high-cost cofactors) etc., are reviewed. Furthermore, techniques of cofactor regeneration and enzyme/cell immobilization are provided. Finally, unique insights and expectations for future development in biosynthesis of rare sugars are given. This review provides a comprehensive analysis of the latest biotechnological advancements in the biosynthesis of rare sugars/alcohols, highlighting innovative multienzyme cascade catalytic systems and cofactor regeneration strategies.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
| | - Mesfin Angaw Tesfay
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Yuhang Ning
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Huibin Lin
- Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Guangwen Liu
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Hongtao Hu
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Xixian Xu
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Xingbo Jiang
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Chunxia Zhao
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Yilin Ren
- Qingdao Longding Biotech Limited Company, Qingdao 266108, China
| | - Can Li
- School of Biological Engineering, Qilu University of Technology, Jinan 250353, China
| | - Chengjia Zhang
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Nannan Dong
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China
| | - Xin Song
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China.
| | - Jianqiang Lin
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology, Shandong University (Qingdao), Qingdao 266237, China.
| |
Collapse
|
2
|
Zhang Y, Zhou Z, Luan H, Zhang X, Liu M, Wang K, Wang F, Feng W, Xu W, Song P. Advances in the biosynthesis of D-allulose. World J Microbiol Biotechnol 2024; 40:375. [PMID: 39487344 DOI: 10.1007/s11274-024-04166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024]
Abstract
D-allulose is a rare monosaccharide and a C-3 epimer of D-fructose. It has physiological functions, such as antihyperglycemic, obesity-preventing, neuroprotective, and reactive oxygen species (ROS) scavenging effects, making it an ideal sugar substitute. The synthesis methods for D-allulose include chemical synthesis and biosynthesis. Chemical synthesis requires strict reaction conditions and tends to produce byproducts. Biosynthesis is mainly an enzymatic process. Enzymatic catalysis for the conversion of starch or glycerol to D-allulose is performed mainly by enzymes such as isoamylase (IA), glucose isomerase (GI), D-allulose 3-epimerase (DPE), D-allulose-6-phosphate 3-epimerase (A6PE), D-allulose 6-phosphate phosphatase (A6PP), ribitol 2-dehydrogenase (RDH), glycerophosphate kinase (GK), glycerophosphate oxidase (GPO), and dihydroxyacetone phosphate (DHAP)-dependent aldolase. Biosynthesis is a more energy-efficient process, producing fewer harmful by-products and pollutants, and significantly reducing negative environmental impacts. Furthermore, the specific catalytic activity of enzymes facilitates the production of compounds of higher purity, thereby facilitating the isolation and purification of the products. It has thus become the main method for producing D-allulose. This article reviews the progress in research on the biosynthetic production of D-allulose, focusing on the enzymes involved and their enzymatic properties, and discusses the production prospects for D-allulose.
Collapse
Affiliation(s)
- Yue Zhang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Zhengsong Zhou
- Shandong Aocter Biotechnology Co., Ltd, Liaocheng, 252000, China
| | - Haoni Luan
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Xue Zhang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Mengyu Liu
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Kuiming Wang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Fei Wang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Wei Feng
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Wei Xu
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Peng Song
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China.
| |
Collapse
|
3
|
Yin H, Cui S, Cao Y, Ge J, Lou W. Light Controlled Nanobiohybrids for Modulating Chiral Alcohol Synthesis. Appl Biochem Biotechnol 2024; 196:2977-2989. [PMID: 37594649 DOI: 10.1007/s12010-023-04667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/19/2023]
Abstract
The modulation of whole-cell activity presents a considerable challenge in biocatalysis. Conventional approaches to whole-cell catalysis, while having their strengths, often rely on complex and deliberate enzyme designs, which could result in difficulties in activity modulation and prolonged response times. Additionally, the activity of intracellular enzymes in whole-cell catalysis is influenced by temperature. To address these limitations, we introduced a relationally designed nanobiohybrid system that utilized light to modulate whole-cell catalysis for chiral alcohol production. By incorporating platinum nanoparticles onto Rhodotorula sp. cell surfaces, the nanobiohybrid capitalized on the photothermal properties of the nanoparticles to regulate the overall cell activity. When exposed to light, the Pt nanoparticles generate heat through the photothermal effect, consequently leading to an increase in the catalytic activity of the whole cells. This innovative approach facilitates control over whole-cell production and provides an efficient method for regulating biocatalytic processes. The findings of this study demonstrate the significant potential of switchable control strategies in biomanufacturing across a wide range of industries.
Collapse
Affiliation(s)
- Hang Yin
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shitong Cui
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yufei Cao
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jun Ge
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| | - Wenyong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
4
|
Feng T, Wang Z, Li H, Li Q, Guo Y, Zhao J, Liu J. Whole-cell biotransformation for simultaneous synthesis of allitol and d-gluconic acid in recombinant Escherichia coli. J Biosci Bioeng 2023; 135:433-439. [DOI: 10.1016/j.jbiosc.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023]
|
5
|
Guo Y, Wang H, Wei X, Wang Z, Wang H, Chen J, Li J, Liu J. Utilization of high-K+-cane molasses for enhanced S-Adenosylmethionine production by manipulation of a K+ transport channel in Saccharomyces cerevisiae. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Wen X, Ning Y, Lin H, Ren Y, Li C, Liu Y, Zhang C, Lin J, Lin J. d-Allulose (d-psicose) biotransformation from d-glucose, separation by simulated moving bed chromatography (SMBC) and purification by crystallization. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Wen X, Lin H, Ning Y, Liu G, Ren Y, Li C, Zhang C, Lin J, Song X, Lin J. D-Allulose (D-Psicose) Biotransformation From Allitol by a Newly Found NAD(P)-Dependent Alcohol Dehydrogenase From Gluconobacter frateurii NBRC 3264 and the Enzyme Characterization. Front Microbiol 2022; 13:870168. [PMID: 35547110 PMCID: PMC9083112 DOI: 10.3389/fmicb.2022.870168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022] Open
Abstract
The NAD(P)-dependent alcohol dehydrogenase (ADH) gene was cloned from Gluconobacter frateurii NBRC 3264 and expressed in Escherichia coli BL21 star (DE3). The expressed enzyme was purified and the characteristics were investigated. The results showed that this ADH can convert allitol into D-allulose (D-psicose), which is the first reported enzyme with this catalytic ability. The optimum temperature and pH of this enzyme were 50°C and pH 7.0, respectively, and the enzyme showed a maximal activity in the presence of Co2+. At 1 mM Co2+ and allitol concentrations of 50, 150, and 250 mM, the D-allulose yields of 97, 56, and 38%, respectively, were obtained after reaction for 4 h under optimal conditions, which were much higher than that obtained by using the epimerase method of about 30%.
Collapse
Affiliation(s)
- Xin Wen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Huibin Lin
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Yuhang Ning
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guangwen Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yilin Ren
- Qingdao Longding Biotech Limited Company, Qingdao, China
| | - Can Li
- School of Biological Engineering, Qilu University of Technology, Jinan, China
| | - Chengjia Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jianqiang Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
8
|
Zhao J, Guo Y, Li Q, Chen J, Niu D, Liu J. Reconstruction of a Cofactor Self-Sufficient Whole-Cell Biocatalyst System for Efficient Biosynthesis of Allitol from d-Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3775-3784. [PMID: 35298165 DOI: 10.1021/acs.jafc.2c00440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The combined catalysis of glucose isomerase (GI), d-psicose 3-epimerase (DPEase), ribitol dehydrogenase (RDH), and formate dehydrogenase (FDH) provides a convenient route for the biosynthesis of allitol from d-glucose; however, the low catalytic efficiency restricts its industrial applications. Here, the supplementation of 0.32 g/L NAD+ significantly promoted the cell catalytic activity by 1.18-fold, suggesting that the insufficient intracellular NAD(H) content was a limiting factor in allitol production. Glucose dehydrogenase (GDH) with 18.13-fold higher activity than FDH was used for reconstructing a cofactor self-sufficient system, which was combined with the overexpression of the rate-limiting genes involved in NAD+ salvage metabolic flow to expand the available intracellular NAD(H) pool. Then, the multienzyme self-assembly system with SpyTag and SpyCatcher effectively channeled intermediates, leading to an 81.1% increase in allitol titer to 15.03 g/L from 25 g/L d-glucose. This study provided a facilitated strategy for large-scale and efficient biosynthesis of allitol from a low-cost substrate.
Collapse
Affiliation(s)
- Jingyi Zhao
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Yan Guo
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Qiufeng Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jing Chen
- South Subtropical Agricultural Scientific Research Institute of Guangxi, Longzhou, Guangxi 532415, China
| | - Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| |
Collapse
|