1
|
Zare Narimani A, Landarani-Isfahani A, Bahadori M, Moghadam M, Tangestaninejad S, Mohammadpoor-Baltork I, Mirkhani V. Covalent Immobilization of Lipase on NH 2-MIL-125(Ti) through Ugi Reaction for Biodiesel Production. ACS APPLIED BIO MATERIALS 2025. [PMID: 40421621 DOI: 10.1021/acsabm.5c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
In this study, heterogeneous biocatalysts were produced by successfully synthesizing the metal-organic framework (MOF) NH2-MIL-125(Ti) as a support, followed by the chemical stabilization of the lipase enzyme using the Ugi four-component reaction (Lipase-NH2-MIL-125), resulting in a stabilization efficiency of 87%. The amine group in MOF plays one of the reactants in the Ugi reaction, and a firm covalent bond is created between the enzyme and the support, which avoids enzyme leaching and leads to a stable biocatalyst. Enzyme efficiency, reusability, pH, and temperature stability of Lipase-NH2-MIL-125 have been investigated, and their high performance has been proven for the biocatalyst. The biodiesel production process using oleic acid has been utilized to evaluate the catalytic activity of the designed biocatalyst, and different parameters have been optimized. The results confirmed the good activity of Lipase-NH2-MIL-125 in biodiesel production, and even after 6 cycles, the activity slightly decreased, which confirmed the stability of the biocatalyst during the reaction.
Collapse
Affiliation(s)
- Ali Zare Narimani
- Catalysis Division, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Amir Landarani-Isfahani
- Catalysis Division, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Mehrnaz Bahadori
- Catalysis Division, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
- Polymeric and Chemical Department, Research and Development Center, Giti Pasand Industrial Group, Isfahan 8173837685, Iran
| | - Majid Moghadam
- Catalysis Division, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Shahram Tangestaninejad
- Catalysis Division, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | | - Valiollah Mirkhani
- Catalysis Division, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
2
|
Baloch KA, Patil U, Pudtikajorn K, Khojah E, Fikry M, Benjakul S. Lipase-Catalyzed Synthesis of Structured Fatty Acids Enriched with Medium and Long-Chain n-3 Fatty Acids via Solvent-Free Transesterification of Skipjack Tuna Eyeball Oil and Commercial Butterfat. Foods 2024; 13:347. [PMID: 38275715 PMCID: PMC10815637 DOI: 10.3390/foods13020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Human milk lipids generally have the maximum long-chain fatty acids at the sn-2 position of the glycerol backbone. This positioning makes them more digestible than long-chain fatty acids located at the sn-1, 3 positions. These unique fatty acid distributions are not found elsewhere in nature. When lactation is insufficient, infant formula milk has been used as a substitute. However, the distribution of most fatty acids ininfant formula milk is still different from human milk. Therefore, structured lipids were produced by the redistribution of medium-chain fatty acids from commercial butterfat (CBF) and n-3 and n-6 long-chain fatty acids from skipjack tuna eyeball oil (STEO). Redistribution was carried out via transesterification facilitated by Asian seabass liver lipase (ASL-L). Under the optimum conditions including a CBF/STEO ratio (3:1), transesterification time (60 h), and ASL-L unit (250 U), the newly formed modified-STEO (M-STEO) contained 93.56% triacylglycerol (TAG), 0.31% diacylglycerol (DAG), and 0.02% monoacylglycerol (MAG). The incorporated medium-chain fatty acids accounted for 18.2% of M-STEO, whereas ASL-L could incorporate 40% of n-3 fatty acids and 25-30% palmitic acid in M-STEO. The 1H NMRA and 13CNMR results revealed that the major saturated fatty acid (palmitic acid) and unsaturated fatty acids (DHA and EPA) were distributed at the sn-2 position of the TAGs in M-STEO. Thus, M-STEO enriched with medium-chain fatty acids and n-3 fatty acids positioned at the sn-2 position of TAGs can be a potential substitute for human milk fatty acids in infant formula milk (IFM).
Collapse
Affiliation(s)
- Khurshid Ahmed Baloch
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
| | - Umesh Patil
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
| | - Khamtorn Pudtikajorn
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
| | - Ebtihal Khojah
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. 11099, Taif 21944, Saudi Arabia
| | - Mohammad Fikry
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.A.B.); (U.P.); (K.P.); (M.F.)
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Fibriana F, Upaichit A, Cheirsilp B. Promoting Magnusiomyces spicifer AW2 Cell-Bound Lipase Production by Co-culturing with Staphylococcus hominis AUP19 and Its Application in Solvent-Free Biodiesel Synthesis. Curr Microbiol 2023; 80:307. [PMID: 37515625 DOI: 10.1007/s00284-023-03394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Yeast-bacterium interaction has recently been investigated to benefit the production of cell-bound lipases (CBLs). Staphylococcus hominis AUP19 supported the growth of Magnusiomyces spicifer AW2 in a palm oil mill effluent (POME) medium to produce CBLs through a bioremediation approach, including oil and grease (O&G) and chemical oxygen demand (COD) removals. This research used the yeast-bacterium co-culture to optimize CBLs and cell biomass (CBM) productions through bioremediation using the statistical Plackett-Burman design and response surface methodology-central composite design. The CBLs were finally applied in biodiesel synthesis. The CBM of 13.8 g/L with CBLs activity at 3391 U/L was achieved after incubation at room temperature (RT, 30 ± 2 °C) for 140 h in 50% POME medium, pH 7.0, containing 1.23% (w/v) ammonium sulfate. Bacterium promoted yeast growth to achieve bioremediation with 87.9% O&G removal and 84.5% COD removal. Time course study showed that the CBLs activity was highest at 24 h cultivation (4103 U/L) and retained 80% and 60% of activities at 4 °C and RT after 5 weeks of storage. The CBLs application successfully yielded 77.3% biodiesel from oleic acid (esterification) and 86.4% biodiesel from palm oil (transesterification) within 72 h in solvent-free systems. This study highlights that yeast-bacterium co-culture and POME should receive more attention for potential low-cost CBLs production through bioremediation, i.e., O&G and COD removals, while the CBLs as biocatalysts are promising for significant contribution to an effective strategy for economic green biodiesel production.
Collapse
Affiliation(s)
- Fidia Fibriana
- International Program of Biotechnology, Molecular Biotechnology Laboratory, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Semarang, Central Java, 50229, Indonesia
| | - Apichat Upaichit
- International Program of Biotechnology, Molecular Biotechnology Laboratory, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| | - Benjamas Cheirsilp
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
4
|
Hu R, Niu Z, Lu Y, Zhu H, Mao Z, Yan K, Hu X, Chen H. Immobilization for Lipase: Enhanced Activity and Stability by Flexible Combination and Solid Support. Appl Biochem Biotechnol 2022; 194:5963-5976. [DOI: 10.1007/s12010-022-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
|
5
|
Tan Z, Bilal M, Li X, Ju F, Teng Y, Iqbal HM. Nanomaterial-immobilized lipases for sustainable recovery of biodiesel – A review. FUEL 2022; 316:123429. [DOI: 10.1016/j.fuel.2022.123429] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|