1
|
Lim SW, Kansedo J, Tan IS, Nandong J, Tan YH, Lam MK, Ongkudon CM. One-pot polyhydroxyalkanoate (PHA) production from Cerbera odollam (sea mango) oil using Pseudomonas resinovorans: Optimal fermentation design and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124394. [PMID: 39921954 DOI: 10.1016/j.jenvman.2025.124394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/08/2025] [Accepted: 01/29/2025] [Indexed: 02/10/2025]
Abstract
With growing environmental concerns over plastic pollution, polyhydroxyalkanoates (PHAs) have recently gained significant attention as promising biodegradable polymers to substitute petroleum-based plastics. In this work, non-edible Cerbera odollam oil was employed as a renewable carbon source for PHA production to improve the economic competitiveness and environmental sustainability of the process. The optimization and mechanism of PHA production from C. odollam oil using Pseudomonas resinovorans DSM 21078 were presented. Through response surface methodology, the optimal condition for PHA production was 0.3 g/L urea concentration, 17.52 g/L oil concentration, and 10.46% (v/v) inoculum size. Results showed that a maximum PHA concentration of 0.50 g/L (with a polymer content of 26.0%) was attained at this optimal condition. The product was composed of 1.3% 3-hydroxybutyrate (3HB), 9.2% 3-hydroxyhexanoate (3HHx), 43.3% 3-hydroxyoctanoate (3HO), 32.0% 3-hydroxydecanoate (3HD), 11.9% 3-hydroxydodecanoate (3HDD), and 2.2% 3-hydroxytetradecanoate (3HTD). The PHA polymers exhibited adhesive, soft, and amorphous properties at room temperature, with high thermal stability, making them desirable for polymer processing. From the mechanism proposed, it was inferred that P. resinovorans DSM 21078 produces longer-chain PHA monomers mainly through the direct β-oxidation of long-chain fatty acids and shorter-chain monomers via the de novo fatty acid synthesis pathway when oil-based substrates are utilized. The findings from this work could pave the way for new paradigms that significantly enhance future research in the development of highly efficient oil resource valorization technologies to produce PHAs with intriguing properties, thereby contributing to the commercial success of sustainable bioplastics as an effective environmental management solution.
Collapse
Affiliation(s)
- Sook Wei Lim
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Jibrail Kansedo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Jobrun Nandong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Yie Hua Tan
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, BE1410, Brunei Darussalam
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi Petronas, 32610 Seri Iskandar, Perak, Malaysia
| | - Clarence M Ongkudon
- Bioprocess Engineering Research Group, Biotechnology Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
2
|
Azizi N, Eslami R, Goudarzi S, Younesi H, Zarrin H. A Review of Current Achievements and Recent Challenges in Bacterial Medium-Chain-Length Polyhydroxyalkanoates: Production and Potential Applications. Biomacromolecules 2024; 25:2679-2700. [PMID: 38656151 DOI: 10.1021/acs.biomac.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Using petroleum-derived plastics has contributed significantly to environmental issues, such as greenhouse gas emissions and the accumulation of plastic waste in ecosystems. Researchers have focused on developing ecofriendly polymers as alternatives to traditional plastics to address these concerns. This review provides a comprehensive overview of medium-chain-length polyhydroxyalkanoates (mcl-PHAs), biodegradable biopolymers produced by microorganisms that show promise in replacing conventional plastics. The review discusses the classification, properties, and potential substrates of less studied mcl-PHAs, highlighting their greater ductility and flexibility compared to poly(3-hydroxybutyrate), a well-known but brittle PHA. The authors summarize existing research to emphasize the potential applications of mcl-PHAs in biomedicine, packaging, biocomposites, water treatment, and energy. Future research should focus on improving production techniques, ensuring economic viability, and addressing challenges associated with industrial implementation. Investigating the biodegradability, stability, mechanical properties, durability, and cost-effectiveness of mcl-PHA-based products compared to petroleum-based counterparts is crucial. The future of mcl-PHAs looks promising, with continued research expected to optimize production techniques, enhance material properties, and expand applications. Interdisciplinary collaborations among microbiologists, engineers, chemists, and materials scientists will drive progress in this field. In conclusion, this review serves as a valuable resource to understand mcl-PHAs as sustainable alternatives to conventional plastics. However, further research is needed to optimize production methods, evaluate long-term ecological impacts, and assess the feasibility and viability in various industries.
Collapse
Affiliation(s)
- Nahid Azizi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, Ontario M5G 2C2, Canada
| | - Reza Eslami
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, Ontario M5G 2C2, Canada
| | - Shaghayegh Goudarzi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Habibollah Younesi
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University (TMU), Nour 64414-356, Iran
| | - Hadis Zarrin
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Research and Innovation Department, Sensofine Inc., Innovation Boost Zone (IBZ), Toronto Metropolitan University, Toronto, Ontario M5G 2C2, Canada
| |
Collapse
|
3
|
Son J, Lim SH, Kim YJ, Lim HJ, Lee JY, Jeong S, Park C, Park SJ. Customized valorization of waste streams by Pseudomonas putida: State-of-the-art, challenges, and future trends. BIORESOURCE TECHNOLOGY 2023; 371:128607. [PMID: 36638894 DOI: 10.1016/j.biortech.2023.128607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Preventing catastrophic climate events warrants prompt action to delay global warming, which threatens health and food security. In this context, waste management using engineered microbes has emerged as a long-term eco-friendly solution for addressing the global climate crisis and transitioning to clean energy. Notably, Pseudomonas putida can valorize industry-derived synthetic wastes including plastics, oils, food, and agricultural waste into products of interest, and it has been extensively explored for establishing a fully circular bioeconomy through the conversion of waste into bio-based products, including platform chemicals (e.g., cis,cis-muconic and adipic acid) and biopolymers (e.g., medium-chain length polyhydroxyalkanoate). However, the efficiency of waste pretreatment technologies, capability of microbial cell factories, and practicability of synthetic biology tools remain low, posing a challenge to the industrial application of P. putida. The present review discusses the state-of-the-art, challenges, and future prospects for divergent biosynthesis of versatile products from waste-derived feedstocks using P. putida.
Collapse
Affiliation(s)
- Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yu Jin Kim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seona Jeong
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
4
|
Optimized cell growth and poly(3-hydroxybutyrate) synthesis from saponified spent coffee grounds oil. Appl Microbiol Biotechnol 2022; 106:6033-6045. [PMID: 36028634 PMCID: PMC9468064 DOI: 10.1007/s00253-022-12093-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/04/2022]
Abstract
Abstract
Spent coffee ground (SCG) oil is an ideal substrate for the biosynthesis of polyhydroxyalkanoates (PHAs) by Cupriavidus necator. The immiscibility of lipids with water limits their bioavailability, but this can be resolved by saponifying the oil with potassium hydroxide to form water-soluble fatty acid potassium salts and glycerol. Total saponification was achieved with 0.5 mol/L of KOH at 50 °C for 90 min. The relationship between the initial carbon substrate concentration (C0) and the specific growth rate (µ) of C. necator DSM 545 was evaluated in shake flask cultivations; crude and saponified SCG oils were supplied at matching initial carbon concentrations (C0 = 2.9–23.0 g/L). The Han-Levenspiel model provided the closest fit to the experimental data and accurately described complete growth inhibition at 32.9 g/L (C0 = 19.1 g/L) saponified SCG oil. Peak µ-values of 0.139 h−1 and 0.145 h−1 were obtained with 11.99 g/L crude and 17.40 g/L saponified SCG oil, respectively. Further improvement to biomass production was achieved by mixing the crude and saponified substrates together in a carbon ratio of 75:25% (w/w), respectively. In bioreactors, C. necator initially grew faster on the mixed substrates (µ = 0.35 h−1) than on the crude SCG oil (µ = 0.23 h−1). After harvesting, cells grown on crude SCG oil obtained a total biomass concentration of 7.8 g/L and contained 77.8% (w/w) PHA, whereas cells grown on the mixed substrates produced 8.5 g/L of total biomass and accumulated 84.4% (w/w) of PHA. Key points • The bioavailability of plant oil substrates can be improved via saponification. • Cell growth and inhibition were accurately described by the Han-Levenpsiel model. • Mixing crude and saponified oils enable variation of free fatty acid content.
Collapse
|
5
|
Vega-Vidaurri JA, Hernández-Rosas F, Ríos-Corripio MA, Loeza-Corte JM, Rojas-López M, Hernández-Martínez R. Coproduction of polyhydroxyalkanoates and exopolysaccharide by submerged fermentation using autochthonous bacterial strains. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02046-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Gupta J, Rathour R, Maheshwari N, Shekhar Thakur I. Integrated analysis of Whole genome sequencing and life cycle assessment for polyhydroxyalkanoates production by Cupriavidus sp. ISTL7. BIORESOURCE TECHNOLOGY 2021; 337:125418. [PMID: 34153867 DOI: 10.1016/j.biortech.2021.125418] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
The current study demonstrates the enhanced production capability of strain Cupriavidus sp. ISTL7 for polyhydroxyalkanoates (PHA) using acetate and glucose (4.93 ± 0.4571 g L-1) which was characterised analytically by GC-MS, FTIR and NMR analysis. Whole genome sequencing of strain ISTL7 unveiled an array of PHA metabolism genes which included phaA, phaB and phaC. Life cycle assessment of the protocol established that the production was most sustainable with the carbon source acetate. + Glucose as compared to acetate/glucose alone. It also concluded that solvent extraction of PHA and energy consumption during the process requires optimization to sustain the production on ecological fronts. Additionally, acetoacetyl-CoA reductase (phaB) gene was molecularly cloned, expressed and purified (27 KDa, 2.63 mg/ml). Conclusively, Cupriavidus sp. ISTL7 is a potential strain for PHA production with a scope of improvement on energy fronts which would transform the production environmentally and economically appealing.
Collapse
Affiliation(s)
- Juhi Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Rashmi Rathour
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Neha Maheshwari
- Amity School of Earth and Environmental Sciences, Amity University Haryana, Manesar, Gurugram 122413, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India; Amity School of Earth and Environmental Sciences, Amity University Haryana, Manesar, Gurugram 122413, India.
| |
Collapse
|
7
|
Jindakaraked M, Khan E, Kajitvichyanukul P. Biodegradation of paraquat by Pseudomonas putida and Bacillus subtilis immobilized on ceramic with supplemented wastewater sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117307. [PMID: 33991735 DOI: 10.1016/j.envpol.2021.117307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/24/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
This work aimed to study the performance of paraquat removal by cell-immobilized ceramics. Two strains of paraquat degrading bacteria, Pseudomonas putida and Bacillus subtilis, were separately immobilized on the ceramic with and without wastewater sludge addition. Results showed that the ceramic surface with sludge has more functional groups and a more highly negative charge on the surface than the original ceramic. The ceramic with sludge had 2-3-fold of the immobilized cells higher than that of the control (without sludge) and less leaching of the immobilized cells. The sludge addition at 20% (w/w) to the ceramic provided the highest cell adhesion for both P. putida and B. subtilis. The paraquat removal efficiencies were higher than 98%, while the control ceramic could remove only 77 ± 1.2%. The immobilized cells on ceramic with sludge provided a significant degree of dissolved organic nitrogen reduction (82%) during the paraquat removal. Most organic nitrogen in paraquat was biologically mineralized (ammonified). Findings from this work suggest the superiority of ceramic with sludge in mineralizing organic nitrogen associated with paraquat.
Collapse
Affiliation(s)
- Manee Jindakaraked
- Center of Excellence on Environmental Research and Innovation, Faculty of Engineering, Naresuan University, Phitsanulok, 65000, Thailand
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV, 89154-4015, USA
| | - Puangrat Kajitvichyanukul
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
8
|
Samrot AV, Samanvitha SK, Shobana N, Renitta ER, Senthilkumar P, Kumar SS, Abirami S, Dhiva S, Bavanilatha M, Prakash P, Saigeetha S, Shree KS, Thirumurugan R. The Synthesis, Characterization and Applications of Polyhydroxyalkanoates (PHAs) and PHA-Based Nanoparticles. Polymers (Basel) 2021; 13:3302. [PMID: 34641118 PMCID: PMC8512352 DOI: 10.3390/polym13193302] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are storage granules found in bacteria that are essentially hydroxy fatty acid polyesters. PHA molecules appear in variety of structures, and amongst all types of PHAs, polyhydroxybutyrate (PHB) is used in versatile fields as it is a biodegradable, biocompatible, and ecologically safe thermoplastic. The unique physicochemical characteristics of these PHAs have made them applicable in nanotechnology, tissue engineering, and other biomedical applications. In this review, the optimization, extraction, and characterization of PHAs are described. Their production and application in nanotechnology are also portrayed in this review, and the precise and various production methods of PHA-based nanoparticles, such as emulsion solvent diffusion, nanoprecipitation, and dialysis are discussed. The characterization techniques such as UV-Vis, FTIR, SEM, Zeta Potential, and XRD are also elaborated.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Sree K. Samanvitha
- Department of Biotechnology, Shanmugha Arts, Science, Technology & Research Academy, Thanjavur 613401, Tamil Nadu, India;
| | - N. Shobana
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - Emilin R. Renitta
- Department of Food Processing Technology, School of Agriculture and Biosciences, Karunya Institute of Science and Technology, Karunya Nagar, Coimbatore, 641114, Tamil Nadu, India;
| | - P. Senthilkumar
- Department of Chemical Engineering, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India;
| | - Suresh S. Kumar
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600126, Tamil Nadu, India
| | - S. Abirami
- Department of Microbiology, Kamaraj College, Thoothukudi 628003, Tamil Nadu, India;
| | - S. Dhiva
- Department of Microbiology, Sree Narayana College, Alathur, Palakkad 678682, Kerala, India;
| | - M. Bavanilatha
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - P. Prakash
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - S. Saigeetha
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - Krithika S. Shree
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India; (N.S.); (M.B.); (P.P.); (S.S.); (K.S.S.)
| | - R. Thirumurugan
- Department of Transfusion Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India;
| |
Collapse
|