1
|
Wu X, Wan X, Yu H, Liu H. Recent advances in CRISPR-Cas system for Saccharomyces cerevisiae engineering. Biotechnol Adv 2025; 81:108557. [PMID: 40081781 DOI: 10.1016/j.biotechadv.2025.108557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Yeast Saccharomyces cerevisiae (S. cerevisiae) is a crucial industrial platform for producing a wide range of chemicals, fuels, pharmaceuticals, and nutraceutical ingredients. It is also commonly used as a model organism for fundamental research. In recent years, the CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) system has become the preferred technology for genetic manipulation in S. cerevisiae owing to its high efficiency, precision, and user-friendliness. This system, along with its extensive toolbox, has significantly accelerated the construction of pathways, enzyme optimization, and metabolic engineering in S. cerevisiae. Furthermore, it has allowed researchers to accelerate phenotypic evolution and gain deeper insights into fundamental biological questions, such as genotype-phenotype relationships. In this review, we summarize the latest advancements in the CRISPR-Cas toolbox for S. cerevisiae and highlight its applications in yeast cell factory construction and optimization, enzyme and phenotypic evolution, genome-scale functional interrogation, gene drives, and the advancement of biotechnologies. Finally, we discuss the challenges and potential for further optimization and applications of the CRISPR-Cas system in S. cerevisiae.
Collapse
Affiliation(s)
- Xinxin Wu
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaowen Wan
- State Key Laboratory of Biotherapy and Cancer Centre/Collaborative Innovation Centre for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongbin Yu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huayi Liu
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; State Key Laboratory of Biotherapy and Cancer Centre/Collaborative Innovation Centre for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Liang Y, Gao S, Qi X, Valentovich LN, An Y. Progress in Gene Editing and Metabolic Regulation of Saccharomyces cerevisiae with CRISPR/Cas9 Tools. ACS Synth Biol 2024; 13:428-448. [PMID: 38326929 DOI: 10.1021/acssynbio.3c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The CRISPR/Cas9 systems have been developed as tools for genetic engineering and metabolic engineering in various organisms. In this review, various aspects of CRISPR/Cas9 in Saccharomyces cerevisiae, from basic principles to practical applications, have been summarized. First, a comprehensive review has been conducted on the history of CRISPR/Cas9, successful cases of gene disruptions, and efficiencies of multiple DNA fragment insertions. Such advanced systems have accelerated the development of microbial engineering by reducing time and labor, and have enhanced the understanding of molecular genetics. Furthermore, the research progress of the CRISPR/Cas9-based systems in the production of high-value-added chemicals and the improvement of stress tolerance in S. cerevisiae have been summarized, which should have an important reference value for genetic and synthetic biology studies based on S. cerevisiae.
Collapse
Affiliation(s)
- Yaokun Liang
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110065, China
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110065, China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, Guangdong 511370, China
| | - Leonid N Valentovich
- Institute of Microbiology, National Academy of Sciences of Belarus, Minsk 220072, Belarus
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110065, China
| |
Collapse
|
3
|
Stepchenkova EI, Zadorsky SP, Shumega AR, Aksenova AY. Practical Approaches for the Yeast Saccharomyces cerevisiae Genome Modification. Int J Mol Sci 2023; 24:11960. [PMID: 37569333 PMCID: PMC10419131 DOI: 10.3390/ijms241511960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
The yeast S. cerevisiae is a unique genetic object for which a wide range of relatively simple, inexpensive, and non-time-consuming methods have been developed that allow the performing of a wide variety of genome modifications. Among the latter, one can mention point mutations, disruptions and deletions of particular genes and regions of chromosomes, insertion of cassettes for the expression of heterologous genes, targeted chromosomal rearrangements such as translocations and inversions, directed changes in the karyotype (loss or duplication of particular chromosomes, changes in the level of ploidy), mating-type changes, etc. Classical yeast genome manipulations have been advanced with CRISPR/Cas9 technology in recent years that allow for the generation of multiple simultaneous changes in the yeast genome. In this review we discuss practical applications of both the classical yeast genome modification methods as well as CRISPR/Cas9 technology. In addition, we review methods for ploidy changes, including aneuploid generation, methods for mating type switching and directed DSB. Combined with a description of useful selective markers and transformation techniques, this work represents a nearly complete guide to yeast genome modification.
Collapse
Affiliation(s)
- Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.I.S.); (S.P.Z.); (A.R.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Sergey P. Zadorsky
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.I.S.); (S.P.Z.); (A.R.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Andrey R. Shumega
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (E.I.S.); (S.P.Z.); (A.R.S.)
| | - Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Zhang C, Chen H, Zhu Y, Zhang Y, Li X, Wang F. Saccharomyces cerevisiae cell surface display technology: Strategies for improvement and applications. Front Bioeng Biotechnol 2022; 10:1056804. [PMID: 36568309 PMCID: PMC9767963 DOI: 10.3389/fbioe.2022.1056804] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Microbial cell surface display technology provides a powerful platform for engineering proteins/peptides with enhanced properties. Compared to the classical intracellular and extracellular expression (secretion) systems, this technology avoids enzyme purification, substrate transport processes, and is an effective solution to enzyme instability. Saccharomyces cerevisiae is well suited to cell surface display as a common cell factory for the production of various fuels and chemicals, with the advantages of large cell size, being a Generally Regarded As Safe (GRAS) organism, and post-translational processing of secreted proteins. In this review, we describe various strategies for constructing modified S. cerevisiae using cell surface display technology and outline various applications of this technology in industrial processes, such as biofuels and chemical products, environmental pollution treatment, and immunization processes. The approaches for enhancing the efficiency of cell surface display are also discussed.
Collapse
Affiliation(s)
- Chenmeng Zhang
- Jiangsu Co Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China,Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Hongyu Chen
- Jiangsu Co Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China,Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Yiping Zhu
- Jiangsu Co Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China,Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Yu Zhang
- Jiangsu Co Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China,Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Xun Li
- Jiangsu Co Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China,Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Fei Wang
- Jiangsu Co Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China,Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China,*Correspondence: Fei Wang,
| |
Collapse
|
5
|
Guo L, Sun L, Huo YX. Toward bioproduction of oxo chemicals from C1 feedstocks using isobutyraldehyde as an example. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:80. [PMID: 35945564 PMCID: PMC9361566 DOI: 10.1186/s13068-022-02178-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022]
Abstract
AbstractOxo chemicals are valuable chemicals for synthesizing a wide array of industrial and consumer products. However, producing of oxo chemicals is predominately through the chemical process called hydroformylation, which requires petroleum-sourced materials and generates abundant greenhouse gas. Current concerns on global climate change have renewed the interest in reducing greenhouse gas emissions and recycling the plentiful greenhouse gas. A carbon–neutral manner in this regard is producing oxo chemicals biotechnologically using greenhouse gas as C1 feedstocks. Exemplifying isobutyraldehyde, this review demonstrates the significance of using greenhouse gas for oxo chemicals production. We highlight the current state and the potential of isobutyraldehyde synthesis with a special focus on the in vivo and in vitro scheme of C1-based biomanufacturing. Specifically, perspectives and scenarios toward carbon– and nitrogen–neutral isobutyraldehyde production are proposed. In addition, key challenges and promising approaches for enhancing isobutyraldehyde bioproduction are thoroughly discussed. This study will serve as a reference case in exploring the biotechnological potential and advancing oxo chemicals production derived from C1 feedstocks.
Collapse
|
6
|
Qi H, Li Y, Cai M, He J, Liu J, Song X, Ma Z, Xu H, Qiao M. High‐copy genome integration and stable production of
p
‐coumaric acid via a
POT1
‐mediated strategy in
Saccharomyces cerevisiae. J Appl Microbiol 2022; 133:707-719. [DOI: 10.1111/jam.15593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Hang Qi
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences Nankai University Tianjin 300071 China
| | - Yuanzi Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences Nankai University Tianjin 300071 China
- School of Light Industry Beijing Technology and Business University (BTBU), Beijing 100048 China
| | - Miao Cai
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences Nankai University Tianjin 300071 China
| | - Jiaze He
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences Nankai University Tianjin 300071 China
| | - Jiayu Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences Nankai University Tianjin 300071 China
| | - Xiaofei Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences Nankai University Tianjin 300071 China
- College Biotechnology and Bioengineering Zhejiang University of Technology (ZJUT), Hangzhou 310014 China
| | - Zhongqiang Ma
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences Nankai University Tianjin 300071 China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences Nankai University Tianjin 300071 China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences Nankai University Tianjin 300071 China
| |
Collapse
|