1
|
Wang N, Xiao M, Zhang S, Chen X, Shi J, Fu S, Shi J, Liu L. Evaluating the potential of different bioaugmented strains to enhance methane production during thermophilic anaerobic digestion of food waste. ENVIRONMENTAL RESEARCH 2024; 245:118031. [PMID: 38157970 DOI: 10.1016/j.envres.2023.118031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Bioaugmentation technology for improving the performance of thermophilic anaerobic digestion (TAD) of food waste (FW) treatment is gaining more attention. In this study, four thermophilic strains (Ureibacillus suwonensis E11, Clostridium thermopalmarium HK1, Bacillus thermoamylovorans Y25 and Caldibacillus thermoamylovorans QK5) were inoculated in the TAD of FW system, and the biochemical methane potential (BMP) batch study was conducted to assess the potential of different bioaugmented strains to enhance methane production. The results showed that the cumulative methane production in groups inoculated with E11, HK1, Y25 and QK5 improved by 2.05%, 14.54%, 19.79% and 9.17%, respectively, compared with the control group with no inoculation. Moreover, microbial community composition analysis indicated that the relative abundance of the main hydrolytic bacteria and/or methanogenic archaea was increased after bioaugmentation, and the four strains successfully became representative bacterial biomarkers in each group. The four strains enhanced methane production by strengthening starch, sucrose, galactose, pyruvate and methane metabolism functions. Further, the correlation networks demonstrated that the representative bacterial genera had positive correlations with the differential metabolic functions in each bioaugmentation group. This study provides new insights into the TAD of FW with bioaugmented strains.
Collapse
Affiliation(s)
- Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyao Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siying Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomiao Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jingjing Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shanfei Fu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China.
| |
Collapse
|
2
|
Ochoa-Hernández ME, Reynoso-Varela A, Martínez-Córdova LR, Rodelas B, Durán U, Alcántara-Hernández RJ, Serrano-Palacios D, Calderón K. Linking the shifts in the metabolically active microbiota in a UASB and hybrid anaerobic-aerobic bioreactor for swine wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118435. [PMID: 37379625 DOI: 10.1016/j.jenvman.2023.118435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Due to the high concentration of pollutants, swine wastewater needs to be treated prior to disposal. The combination of anaerobic and aerobic technologies in one hybrid system allows to obtain higher removal efficiencies compared to those achieved via conventional biological treatment, and the performance of a hybrid system depends on the microbial community in the bioreactor. Here, we evaluated the community assembly of an anaerobic-aerobic hybrid reactor for swine wastewater treatment. Sequencing of partial 16S rRNA coding genes was performed using Illumina from DNA and retrotranscribed RNA templates (cDNA) extracted from samples from both sections of the hybrid system and from a UASB bioreactor fed with the same swine wastewater influent. Proteobacteria and Firmicutes were the dominant phyla and play a key role in anaerobic fermentation, followed by Methanosaeta and Methanobacterium. Several differences were found in the relative abundances of some genera between the DNA and cDNA samples, indicating an increase in the diversity of the metabolically active community, highlighting Chlorobaculum, Cladimonas, Turicibacter and Clostridium senso stricto. Nitrifying bacteria were more abundant in the hybrid bioreactor. Beta diversity analysis revealed that the microbial community structure significantly differed among the samples (p < 0.05) and between both anaerobic treatments. The main predicted metabolic pathways were the biosynthesis of amino acids and the formation of antibiotics. Also, the metabolism of C5-branched dibasic acid, Vit B5 and CoA, exhibited an important relationship with the main nitrogen-removing microorganisms. The anaerobic-aerobic hybrid bioreactor showed a higher ammonia removal rate compared to the conventional UASB system. However, further research and adjustments are needed to completely remove nitrogen from wastewater.
Collapse
Affiliation(s)
- María E Ochoa-Hernández
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico
| | - Andrea Reynoso-Varela
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur., Ciudad Obregón, Sonora, CP.85000, Mexico
| | - Luis R Martínez-Córdova
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico
| | - Belén Rodelas
- Department of Microbiology and Institute of Water Research, University of Granada, Spain
| | - Ulises Durán
- Universidad Autónoma Metropolitana, Biotechnology Dept., P.A. 55-535, 09340, Iztapalapa, Mexico City, Mexico
| | - Rocío J Alcántara-Hernández
- Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Del. Coyoacán, 04510, Ciudad de México, Mexico
| | - Denisse Serrano-Palacios
- Departamento de Ciencias del Agua y Medio Ambiente, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur., Ciudad Obregón, Sonora, CP.85000, Mexico.
| | - Kadiya Calderón
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Blvd. Luis Donaldo Colosio S/N. CP., 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|