1
|
Wei X, Weng Z, Xu X, Yao J. Exploration of a miRNA-mRNA network shared between acute pancreatitis and Epstein-Barr virus infection by integrated bioinformatics analysis. PLoS One 2024; 19:e0311130. [PMID: 39546499 PMCID: PMC11567522 DOI: 10.1371/journal.pone.0311130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/10/2024] [Indexed: 11/17/2024] Open
Abstract
Acute pancreatitis (AP) stands out as a primary cause of hospitalization within gastrointestinal ailments, attributed to diverse factors, including Epstein-Barr virus (EBV) infection. Nevertheless, the common miRNAs and genes shared between AP and EBV infection remain unclear. In the present study, four datasets GSE194331, GSE42455, GSE45918 and GSE109220 were selected and downloaded from the Gene Expression Omnibus (GEO) database. Differential expression analysis was performed to screen for differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs). Target genes of overlapping DEMs were predicted, and intersections with overlapping DEGs were used to construct a miRNA-mRNA network. In addition, the enrichment analysis, drug prediction, diagnostic accuracy assessment, competitive endogenous RNA (ceRNA) network construction, transcription factor (TF)-miRNA-mRNA network construction, and immune cell infiltration analysis were also carried out. We found a total of 111 genes and 8 miRNAs shared between AP and EBV infection. A miRNA-mRNA network was constructed, which comprised 5 miRNAs and 10 genes exhibiting robust diagnostic performance. Histone deacetylase (HDAC) inhibitor was identified as a novel therapeutic intervention from drug prediction analysis. The results of immune cell infiltration analysis revealed that a consistent and significant difference could be found on activated B cell in AP and EBV-infected individuals in comparison to the controls. Taken together, our work, for the first time, revealed a miRNA-mRNA network shared between AP and EBV infection, thereby enriching a deeper comprehension of the intricate molecular mechanisms and potential therapeutic targets entwined in these two pathological conditions.
Collapse
Affiliation(s)
- Xing Wei
- Department of Infectious Disease, The Nantong First People’s Hospital and The Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Zhen Weng
- MOE Engineering Center of Hematological Disease, Soochow University, Suzhou, China
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xia Xu
- Department of Gastroenterology, The Second People’s Hospital of Nantong and The Affiliated Rehabilitation Hospital of Nantong University, Nantong, China
| | - Jian Yao
- Department of Infectious Disease, The Nantong First People’s Hospital and The Affiliated Hospital 2 of Nantong University, Nantong, China
| |
Collapse
|
2
|
Lu W, Wan G, Zhu H, Zhu T, Zhang X. MiR-497-5p regulates ox-LDL-induced dysfunction in vascular endothelial cells by targeting VEGFA/p38/MAPK pathway in atherosclerosis. Heliyon 2024; 10:e28887. [PMID: 38601630 PMCID: PMC11004747 DOI: 10.1016/j.heliyon.2024.e28887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Background The impairment of endothelial cells triggered by oxidized low-density lipoprotein (ox-LDL) stands as a critical event in the advancement of atherosclerosis (AS). MiR-497-5p has been recognized as a potential predictor for AS, but its precise involvement in ox-LDL-induced endothelial cell dysfunction remains to be elucidated. Methods An in vitro AS cell model was established by exposing human umbilical vein endothelial cells (HUVECs) to 100 μg/mL ox-LDL for 24 h. The assessment of endothelial cell function included evaluating cell viability, caspase-3 activity, inflammatory factors, and oxidative markers. Molecular mechanisms were elucidated through quantitative real-time PCR, Western blot analysis, and luciferase reporter assays. Results Our investigation revealed that exposure to ox-LDL led to an upregulation in miR-497-5p and p-p38 levels, while downregulating the expression of vascular endothelial growth factor A (VEGFA) and phosphorylated (p)-endothelial nitric oxide synthase (p-eNOS) in HUVECs. Ox-LDL exposure resulted in decreased cell viability and angiogenic capacity, coupled with increased apoptosis, inflammation, and oxidative stress in HUVECs, partially mediated by the upregulation of miR-497-5p. We confirmed VEGFA as a direct target of miR-497-5p. Interfering with VEGFA expression significantly reversed the effects mediated by miR-497-5p silencing in HUVECs exposed to ox-LDL. Conclusions In summary, our findings demonstrate that miR-497-5p exacerbates ox-LDL-induced dysfunction in HUVECs through the activation of the p38/MAPK pathway, mediated by the targeting of VEGFA.
Collapse
Affiliation(s)
- Wei Lu
- Department of Cardiovascular Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Guoqing Wan
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - He Zhu
- Zhejiang Chinese Medical University, Zhejiang, China
| | - Tao Zhu
- Zhejiang Chinese Medical University, Zhejiang, China
| | - Xinmei Zhang
- Department of Cardiovascular Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| |
Collapse
|
3
|
Zhou S, Li Y, Sun W, Ma D, Liu Y, Cheng D, Li G, Ni C. circPVT1 promotes silica-induced epithelial-mesenchymal transition by modulating the miR-497-5p/TCF3 axis. J Biomed Res 2024; 38:163-174. [PMID: 38529638 PMCID: PMC11001589 DOI: 10.7555/jbr.37.20220249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 03/27/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a vital pathological feature of silica-induced pulmonary fibrosis. However, whether circRNA is involved in the process remains unclear. The present study aimed to investigate the role of circPVT1 in the silica-induced EMT and the underlying mechanisms. We found that an elevated expression of circPVT1 promoted EMT and enhanced the migratory capacity of silica-treated epithelial cells. The isolation of cytoplasmic and nuclear separation assay showed that circPVT1 was predominantly expressed in the cytoplasm. RNA immunoprecipitation assay and RNA pull-down experiment indicated that cytoplasmic-localized circPVT1 was capable of binding to miR-497-5p. Furthermore, we found that miR-497-5p attenuated the silica-induced EMT process by targeting transcription factor 3 (TCF3), an E-cadherin transcriptional repressor, in the silica-treated epithelial cells. Collectively, these results reveal a novel role of the circPVT1/miR-497-5p/TCF3 axis in the silica-induced EMT process in lung epithelial cells. Once validated, this finding may provide a potential theoretical basis for the development of interventions and treatments for pulmonary fibrosis.
Collapse
Affiliation(s)
- Siyun Zhou
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yan Li
- Biomedical Publications Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wenqing Sun
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongyu Ma
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yi Liu
- Gusu School, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Guanru Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
4
|
Hao Z, Yin C, Wang X, Huo Z, Zhang G, Jiang D, An M. Tetramethylpyrazine promotes angiogenesis and nerve regeneration and nerve defect repair in rats with spinal cord injury. Heliyon 2023; 9:e21549. [PMID: 38027809 PMCID: PMC10656251 DOI: 10.1016/j.heliyon.2023.e21549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/25/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Objective This study evaluated the regulatory effect of Tetramethylpyrazine (TMP) on the spinal cord injury (SCI) rat model and clarified the neuroprotective mechanism of TMP on SCI. Methods An SCI rat model was generated and treated with TMP injections for two weeks. miR-497-5p and EGFL7 expression changes were evaluated, motor function recovery after SCI was assessed by BBB score test and footprint analysis, lesions of rat spinal cord were assessed by HE staining and TUNEL staining; angiogenesis was assessed by immunoblotting for CD31; inflammatory factor levels were detected by ELISA. EGFL7 was verified as a target of miR-497-5p by bioinformatics website analysis and luciferase reporter gene assay. H2O2-injured neurons were cultured in vitro to explore the effect of TMP. Results After SCI, miR-497-5p was upregulated while EGFL7 was downregulated in rats. TMP inhibited apoptosis and promoted angiogenesis, nerve regeneration, and repair of nerve defects by reducing miR-497-5p and increasing EGFL7 expression. miR-497-5p targeted EGFL7. In addition, TMP hindered neuronal inflammation and apoptosis induced by H2O2in vitro. Conclusion TMP promotes angiogenesis by downregulating miR-497-5p to target EGFL7, and promotes nerve regeneration and repair of nerve defects in rats with SCI.
Collapse
Affiliation(s)
- ZengTao Hao
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| | - Chao Yin
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| | - XiaoLong Wang
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| | - ZhiQi Huo
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| | - GuoRong Zhang
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| | - Dong Jiang
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| | - Min An
- Department of Hand and Foot Microsurgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, 010000, China
| |
Collapse
|
5
|
Jiang Y, Cai W, Cai G, Wang D, Wu Q. The dysregulation of plasma miR-497/FGF23 axis, and its association with clinical characteristics and major adverse cardiovascular event in female premature acute coronary syndrome patients. Ir J Med Sci 2023; 192:2105-2115. [PMID: 36645571 DOI: 10.1007/s11845-022-03256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 01/17/2023]
Abstract
AIM MicroRNA-497 (miR-497) directly targets fibroblast growth factor 23 (FGF23) to participate in the pathology of acute coronary syndrome (ACS) by regulating atherosclerosis, inflammatory response, lipid metabolism, etc. This study intended to investigate the dysregulation of the miR-497/FGF23 axis, and its association with the major adverse cardiovascular event (MACE) in female premature ACS. METHODS MiR-497 and FGF23 from plasma samples were detected by RT-qPCR and ELISA in 979 newly diagnosed female premature ACS patients and 100 healthy controls (HCs). MACE was recorded during follow-up (median: 27.0, range: 1.0-54.0 months) in female premature ACS patients. RESULTS MiR-497/FGF23 axis was reduced in female premature ACS patients versus HCs [median (interquartile range): 0.7 (0.1-1.2) versus 1.9 (1.1-3.4)] (P < 0.001). Meanwhile, miR-497 negatively correlated with FGF23 in femal e premature ACS patients (P < 0.001), but not in HCs (P = 0.157). In female premature ACS patients, the miR-497/FGF23 axis was negatively associated with serum creatinine (P < 0.001), serum uric acid (P = 0.003), high-sensitivity C-reactive protein (P < 0.001), total cholesterol (P = 0.031), and low-density lipoprotein cholesterol (P = 0.003). The 1-year, 2-year, 3-year, and 4-year accumulating MACE rate was 2.9%, 8.6%, 16.7%, and 26.0%, respectively. Interestingly, a high level of miR-497/FGF23 axis predicted decreased accumulating MACE risk (P < 0.001). After adjustment by multivariate Cox's regression analysis, the high miR-497/FGF23 axis (hazard ratio (HR) = 0.005, P = 0.001) independently correlated with reduced accumulating MACE risk. CONCLUSION The plasma miR-497/FGF23 axis represents favorable kidney function, decreased inflammation, and reduced lipid level; meanwhile, this axis possesses prognostic value in predicting decreased accumulating MACE risk in female premature ACS patients.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Wenyao Cai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Guorong Cai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Dingkun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang of Jiangxi, 330006, China.
| |
Collapse
|
6
|
Han X, Li B, Zhang S. MIR503HG: A potential diagnostic and therapeutic target in human diseases. Biomed Pharmacother 2023; 160:114314. [PMID: 36736276 DOI: 10.1016/j.biopha.2023.114314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
LncRNAs are involved in many physiological and pathological processes, including chromatin remodeling, transcription, posttranscriptional gene expression, mRNA stability, translation, and posttranslational modification, and their functions depend on subcellular localization. MIR503HG is a lncRNA as well as a host gene for the miRNAs miR-503 and miR-424. MIR503HG functions independently or synergistically with miR-503. MIR503HG affects cell proliferation, invasion, metastasis, apoptosis, angiogenesis, and other biological behaviors. The mechanism of MIR503HG in disease includes interaction with protein, sponging miRNA to regulate downstream target gene, and participation in NF-κB, TGF-β, ERK/MAPK, and PI3K/AKT signaling pathways. In this review, we summarize the molecular mechanisms of MIR503HG in disease and its potential applications in diagnosis, prognosis, and treatment. We also raise some unanswered questions in this area, providing insights for future research.
Collapse
Affiliation(s)
- Xue Han
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China.
| | - Bo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China. libo--
| | - Shitai Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China.
| |
Collapse
|
7
|
Circular RNA MELK Promotes Chondrocyte Apoptosis and Inhibits Autophagy in Osteoarthritis by Regulating MYD88/NF-κB Signaling Axis through MicroRNA-497-5p. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7614497. [PMID: 35992546 PMCID: PMC9356867 DOI: 10.1155/2022/7614497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 12/25/2022]
Abstract
Osteoarthritis (OA) is a rheumatic disease and its pathogenesis involves the dysregulation of noncoding RNAs. Therefore, the regulatory mechanism of circular RNA MELK (circMELK) was specified in this work. OA human cartilage tissue was collected, and circMELK, miR-497-5p, and myeloid differentiation factor 88 (MYD88) expression were examined. Human chondrocytes were stimulated with interleukin- (IL-) 1β and interfered with vectors altering circMELK, miR-497-5p, and MyD88 expression to observe their effects on cell viability, cell cycle and apoptosis, autophagy, and inflammation. The binding relationship between RNAs was verified. The data presented that OA cartilage tissues presented raised circMELK and MYD88 and inhibited miR-497-5p expression. IL-1β suppressed cell viability, prevented cell cycle, and induced apoptosis, autophagy, and inflammation of chondrocytes. Functionally, IL-1β-induced changes of chondrocytes could be attenuated by suppressing circMELK or overexpressing miR-497-5p. circMELK acted as a sponge of miR-497-5p while miR-497-5p was a regulator of MYD88. MYD88 restricted the effect of overexpressing miR-497-5p on IL-1β-stimulated chondrocytes. MYD88 triggered nuclear factor-kappaB (NF-κB) pathway activation. Shortly, CircMELK promotes chondrocyte apoptosis and inhibits autophagy in OA by regulating MYD88/NF-κB signaling axis through miR-497-5p. Our study proposes a new molecular mechanism for the development of OA.
Collapse
|