1
|
Zhou MT, Zhang P, Mao Q, Wei XQ, Yang L, Zhang XM. Current research status of transarterial therapies for hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:3752-3760. [PMID: 39350995 PMCID: PMC11438772 DOI: 10.4251/wjgo.v16.i9.3752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 09/09/2024] Open
Abstract
With continuous advancements in interventional radiology, considerable progress has been made in transarterial therapies for hepatocellular carcinoma (HCC) in recent years, and an increasing number of research papers on transarterial therapies for HCC have been published. In this editorial, we comment on the article by Ma et al published in the recent issue of the World Journal of Gastro intestinal Oncology: "Efficacy and predictive factors of transarterial chemoembolization combined with lenvatinib plus programmed cell death protein-1 inhibition for unresectable HCC". We focus specifically on the current research status and future directions of transarterial therapies. In the future, more studies are needed to determine the optimal transarterial local treatment for HCC. With the emergence of checkpoint immunotherapy modalities, it is expected that the results of trials of transarterial local therapy combined with systemic therapy will bring new hope to HCC patients.
Collapse
Affiliation(s)
- Mao-Ting Zhou
- Department of Radiology, Interventional Medical Center, Science and Technology Innovation Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Peng Zhang
- Department of Radiology, Interventional Medical Center, Science and Technology Innovation Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Qi Mao
- Department of Radiology, Interventional Medical Center, Science and Technology Innovation Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Qin Wei
- School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Lin Yang
- Department of Radiology, Interventional Medical Center, Science and Technology Innovation Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Ming Zhang
- Department of Radiology, Interventional Medical Center, Science and Technology Innovation Center, The Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
2
|
Li T, Liu L, Li L, Yao X, Hu X, Cheng J, Chen Z, Guo J, Li R, Ge C, Lin MCM, Yao H. HGFK1 Enhances the Anti-Tumor Effects of Angiogenesis Inhibitors via Inhibition of CD90+ CSCs in Hepatocellular Carcinoma. Pharmaceuticals (Basel) 2024; 17:645. [PMID: 38794215 PMCID: PMC11125149 DOI: 10.3390/ph17050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The combination of anti-angiogenesis agents with immune-checkpoint inhibitors is a promising treatment for patients with advanced hepatocellular carcinoma (HCC); however, therapeutic resistance caused by cancer stem cells present in tumor microenvironments remains to be overcome. In this study, we report for the first time that the Kringle 1 domain of human hepatocyte growth-factor α chain (HGFK1), a previously described anti-angiogenesis peptide, repressed the sub-population of CD90+ cancer stem cells (CSCs) and promoted their differentiation and chemotherapy sensitivity mainly through downregulation of pre-Met protein expression and inhibition of Wnt/β-catenin and Notch pathways. Furthermore, we showed that the i.p. injection of PH1 (a tumor-targeted and biodegradable co-polymer), medicated plasmids encoding Endostatin (pEndo), HGFK1 genes (pEndo), and a combination of 50% pEndo + 50% pHGFK1 all significantly suppressed tumor growth and prolonged the survival of the HCC-bearing mice. Importantly, the combined treatment produced a potent synergistic effect, with 25% of the mice showing the complete clearance of the tumor via a reduction in the microvessel density (MVD) and the number of CD90+ CSCs in the tumor tissues. These results suggest for the first time that HGFK1 inhibits the CSCs of HCC. Furthermore, the combination of two broad-spectrum anti-angiogenic factors, Endo and HGFK1, is the optimal strategy for the development of effective anti-HCC drugs.
Collapse
Affiliation(s)
- Tao Li
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Ling Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Li Li
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Xiaoxuan Yao
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Xiaoyuan Hu
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Jiaxing Cheng
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Zhenpu Chen
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Jiyin Guo
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Ruilei Li
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Chunlei Ge
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Marie Chia-Mi Lin
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
| | - Hong Yao
- Cancer Biotherapy Center & Cancer Research Institute, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming 650106, China; (T.L.)
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| |
Collapse
|
3
|
Pan D, Wang Q, Tang S, Wu X, Cai L, Wang Z, Li Y, Huang M, Zhou Y, Shen YQ. Acetyl-11-keto-beta-boswellic acid inhibits cell proliferation and growth of oral squamous cell carcinoma via RAB7B-mediated autophagy. Toxicol Appl Pharmacol 2024; 485:116906. [PMID: 38513840 DOI: 10.1016/j.taap.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Natural products can overcome the limitations of conventional chemotherapy. Acetyl-11-keto-beta-boswellic acid (AKBA) as a natural product extracted from frankincense, exhibited chemotherapeutic activities in different cancers. However, whether AKBA exerts inhibiting effect of oral squamous cell carcinoma (OSCC) cells growth and the mechanism need to be explored. We attempted to investigate the therapeutic effects of AKBA against OSCC and explore the mechanism involved. Here we attempt to disclose the cell-killing effect of AKBA on OSCC cell lines and try to figure out the specifical pathway. The presence of increase autophagosome and the production of mitochondrial reactive oxygen species were confirmed after the application of AKBA on OSCC cells, and RAB7B inhibition enhanced autophagosome accumulation. Though the increase autophagosome was detected induced by AKBA, autophagic flux was inhibited as the failure fusion of autophagosome and lysosome. Cal27 xenografts were established to verify the role of anti-OSCC cells of AKBA in vivo. Based above findings, we speculate that natural product AKBA suppresses OSCC cells growth via RAB7B-mediated autophagy and may serve as a promising strategy for the therapy of OSCC.
Collapse
Affiliation(s)
- Dan Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Qing Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Shouyi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Xingbo Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Luyao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Zhen Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Ying Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Mei Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
4
|
Zeng N, Wang Y, Wan Y, Wang H, Li N. The Antitumor Impact of Combining Hepatic Artery Ligation With Copper Chelators for Liver Cancer. Clin Med Insights Oncol 2023; 17:11795549231204612. [PMID: 38023286 PMCID: PMC10666691 DOI: 10.1177/11795549231204612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/13/2023] [Indexed: 12/01/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the main cancer-related mortality worldwide. Thus, there is a constant search for improvement in treatment strategies to enhance the prognosis of this malignancy. The study aims to investigate the combined antitumor activity of ammonium tetrathiomolybdate (TM, copper chelator) combined with hepatic artery ligation (HAL) for liver cancer. Methods A total of 40 Sprague-Dawley (SD) rats bearing hepatic tumors were randomly divided into four groups: the control group without any treatment (control), HAL only (HAL), given TM by gavage (TM), and given TM combined with HAL (HAL + TM). The concentrations of serum copper were measured at the predetermined time points. Tumor growth rate, overall survival (OS), expression of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and microvessel density (MVD), as determined by immunohistochemical examination, were compared. Results HAL treatment transiently could elevate alanine transaminase (ALT) and aspartate transaminase (AST) but resumed to baseline within 1 week. Serum copper was significantly increased in tumor-bearing animals over time. The values of serum copper in the three treatment groups were significantly lower than those in the control group at different time points, with the lowest values observed in the TM group (P < .05). The average tumor size was 30.33 ± 2.58, 20.83 ± 2.93, 16.80 ± 3.84, and 10.88 ± 1.08 mm in the control, HAL, TM, and HAL + TM groups, respectively (HAL + TM vs other groups, all P < .05). In addition, the expression levels of HIF-1α, VEGF, and MVD were significantly lower in the HAL + TM group than those in the other groups (P < .05). The OS of rats in the combined groups was significantly prolonged combined to the other groups (P < .05), with survival time of 19.1 ± 0.64, 25.4 ± 1.24, 25.3 ± 1.78, and 29.9 ± 2.22 days in the control, HAL, TM, and HAL + TM groups, respectively. Conclusion These findings suggest that combined treatment with TM and HAL holds great potential for liver cancer treatment by reducing tumor hypoxia and angiogenesis. The observed results indicate that these combinations may offer a novel target and strategy for interventional therapy of liver cancer.
Collapse
Affiliation(s)
- Ni Zeng
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye Wang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuan Wan
- Interventional Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Wang
- Department of Interventional Therapy, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Nan Li
- Department of Interventional Radiology, Guangzhou First People’s Hospital, Guangzhou, China
| |
Collapse
|
5
|
Yi C, Wei W, Wan M, Chen Y, Zhang B, Wu W. Expression Patterns of HOX Gene Family Defines Tumor Microenvironment and Immunotherapy in Hepatocellular Carcinoma. Appl Biochem Biotechnol 2023; 195:5072-5093. [PMID: 36976502 DOI: 10.1007/s12010-023-04443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Hepatocellular carcinoma (HCC) pathophysiology is prevalently related with HOX genes. However, the study on associations of extensive HOX genes with tumor microenvironment and drug sensitivity of HCC remains scarce. The data sets of HCC were downloaded from TCGA, ICGC, and GEO by bioinformatics method and analyzed. Based on a computational frame, HCC samples were divided into a high and a low HOXscore group, and significantly shorter survival time in the high HOXscore was observed relative to low HOXscore group using survival analysis. Gene set enrichment analysis (GSEA) revealed that the high HOXscore group was more likely to be enriched in cancer-specific pathways. Furthermore, the high HOXscore group was involved in the infiltration of inhibitory immune cells. In response to anti-cancer drugs, the high HOXscore group was more sensitive to mitomycin and cisplatin. Importantly, the HOXscore was associated with the therapeutic efficacy of PD-L1 blockade, suggesting that the development of potential drugs targeting these HOX genes to aid the clinical benefits of immunotherapy is needed. In addition, RT-qPCR and immunohistochemistry showed 10 HOX genes mRNA expression was higher in HCC compared to the normal tissues. This study provides a comprehensive analysis of HOX genes family in HCC and revealed the potential function of these HOX genes family in tumor microenvironment (TME) and identified their therapeutic liability in targeted therapy and immunotherapy. Eventually, this work highlights the cross-talk and potential clinical utility of HOX genes family in HCC therapy.
Collapse
Affiliation(s)
- Changhong Yi
- Department of Interventional Radiology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Wei Wei
- Department of Interventional, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Maolin Wan
- Department of Interventional, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Ya Chen
- Department of Interventional, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Bo Zhang
- Department of Interventional, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Wenze Wu
- Department of Interventional, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China.
| |
Collapse
|
6
|
Alqurashi YE, Al-Hetty HRAK, Ramaiah P, Fazaa AH, Jalil AT, Alsaikhan F, Gupta J, Ramírez-Coronel AA, Tayyib NA, Peng H. Harnessing function of EMT in hepatocellular carcinoma: From biological view to nanotechnological standpoint. ENVIRONMENTAL RESEARCH 2023; 227:115683. [PMID: 36933639 DOI: 10.1016/j.envres.2023.115683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 05/08/2023]
Abstract
Management of cancer metastasis has been associated with remarkable reduction in progression of cancer cells and improving survival rate of patients. Since 90% of mortality are due to cancer metastasis, its suppression can improve ability in cancer fighting. The EMT has been an underlying cause in increasing cancer migration and it is followed by mesenchymal transformation of epithelial cells. HCC is the predominant kind of liver tumor threatening life of many people around the world with poor prognosis. Increasing patient prognosis can be obtained via inhibiting tumor metastasis. HCC metastasis modulation by EMT and HCC therapy by nanoparticles are discussed here. First of all, EMT happens during progression and advanced stages of HCC and therefore, its inhibition can reduce tumor malignancy. Moreover, anti-cancer compounds including all-trans retinoic acid and plumbaging, among others, have been considered as inhibitors of EMT. The EMT association with chemoresistance has been evaluated. Moreover, ZEB1/2, TGF-β, Snail and Twist are EMT modulators in HCC and enhancing cancer invasion. Therefore, EMT mechanism and related molecular mechanisms in HCC are evaluated. The treatment of HCC has not been only emphasized on targeting molecular pathways with pharmacological compounds and since drugs have low bioavailability, their targeted delivery by nanoparticles promotes HCC elimination. Moreover, nanoparticle-mediated phototherapy impairs tumorigenesis in HCC by triggering cell death. Metastasis of HCC and even EMT mechanism can be suppressed by cargo-loaded nanoparticles.
Collapse
Affiliation(s)
- Yaser E Alqurashi
- Department of Biology, College of Science Al-zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | | | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|