1
|
Suleman M, Khan A, Khan SU, Alissa M, Alghamdi SA, Alghamdi A, Abdullah Alamro A, Crovella S. Screening of medicinal phytocompounds with structure-based approaches to target key hotspot residues in tyrosyl-DNA phosphodiesterase 1: augmenting sensitivity of cancer cells to topoisomerase I inhibitors. J Biomol Struct Dyn 2025:1-16. [PMID: 40231415 DOI: 10.1080/07391102.2025.2490061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/07/2024] [Indexed: 04/16/2025]
Abstract
One of cancer's well-known hallmarks is DNA damage, yet it's intriguing that DNA damage has been explored as a therapeutic strategy against cancer. Tyrosyl-DNA phosphodiesterase 1, involved in DNA repair from topoisomerase I inhibitors, a chemotherapy class for cancer treatment. Inhibiting TDP1 can increase unresolved Top1 cleavage complexes in cancer cells, inducing DNA damage and cell death. TDP1's catalytic activity depends on His263 and His493 residues. Using molecular simulation, structure-based drug design, and free energy calculation, we identified potential drugs against TDP1. A multi-step screening of medicinal plant compound databases (North Africa, East Africa, Northeast Africa, and South Africa) identified the top four candidates. Docking scores for top hits 1-4 were -7.76, -7.37, -7.35, and -7.24 kcal/mol. Top hit 3 exhibited the highest potency, forming a strong bonding network with both His263 and His493 residues. All-atoms simulations showed consistent dynamics for top hits 1-4, indicating stability and potential for efficient interaction with interface residues. Minimal fluctuations in residue flexibility suggest these compounds can stabilize internal flexibility upon binding. The binding free energies of -35.11, -36.70, -31.38, and -23.85 kcal/mol were calculated for the top hit 1-4 complexes. Furthermore, the chosen compounds demonstrate outstanding ADMET characteristics, such as excellent water solubility, effective gastrointestinal absorption, and the absence of hepatotoxicity. Cytotoxicity analysis revealed top hit 2 higher probability of activity against 24 cancer cell lines. Our findings suggest that these compounds (top hits 1-4) hold promise for innovative drug therapies, suitable for both in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Amani Alghamdi
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abir Abdullah Alamro
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Kuttikrishnan S, Ansari AW, Suleman M, Ahmad F, Prabhu KS, El‐Elimat T, Alali FQ, Al Shabeeb Akil AS, Bhat AA, Merhi M, Dermime S, Steinhoff M, Uddin S. The apoptotic and anti-proliferative effects of Neosetophomone B in T-cell acute lymphoblastic leukaemia via PI3K/AKT/mTOR pathway inhibition. Cell Prolif 2025; 58:e13773. [PMID: 39542458 PMCID: PMC11882758 DOI: 10.1111/cpr.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
The phosphatidylinositol 3-kinase/Protein Kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signalling pathway is pivotal in various cancers, including T-cell acute lymphoblastic leukaemia (T-ALL), a particularly aggressive type of leukaemia. This study investigates the effects of Neosetophomone B (NSP-B), a meroterpenoid fungal metabolite, on T-ALL cell lines, focusing on its anti-cancer mechanisms and therapeutic potential. NSP-B significantly inhibited the proliferation of T-ALL cells by inducing G0/G1 cell cycle arrest and promoting caspase-dependent apoptosis. Additionally, NSP-B led to the dephosphorylation and subsequent inactivation of the PI3K/AKT/mTOR signalling pathway, a critical pathway in cell survival and growth. Molecular docking studies revealed a strong binding affinity of NSP-B to the active site of AKT, primarily involving key residues crucial for its activity. Interestingly, NSP-B treatment also induced apoptosis and significantly reduced proliferation in phytohemagglutinin-activated primary human CD3+ T cells, accompanied by a G0/G1 cell cycle arrest. Importantly, NSP-B did not affect normal primary T cells, indicating a degree of selectivity in its action, targeting only T-ALL cells and activated T cells. In conclusion, our findings highlight the potential of NSP-B as a novel therapeutic agent for T-ALL, specifically targeting the aberrantly activated PI3K/AKT/mTOR pathway and being selective in action. These results provide a strong basis for further investigation into NSP-B's anti-cancer properties and potential application in T-ALL clinical therapies.
Collapse
Affiliation(s)
- Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- College of Pharmacy, QU HealthQatar UniversityDohaQatar
| | - Abdul W. Ansari
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
| | | | - Fareed Ahmad
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
| | - Tamam El‐Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of PharmacyJordan University of Science and TechnologyIrbidQatar
| | | | - Ammira S. Al Shabeeb Akil
- Department of Human Genetics‐Precision Medicine in Diabetes, Obesity and Cancer ProgramSidra MedicineDohaQatar
| | - Ajaz A. Bhat
- Department of Human Genetics‐Precision Medicine in Diabetes, Obesity and Cancer ProgramSidra MedicineDohaQatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and ResearchHamad Medical CorporationDohaQatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and ResearchHamad Medical CorporationDohaQatar
- College of Health SciencesQatar UniversityDohaQatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Department of Dermatology & VenereologyHamad Medical CorporationDohaQatar
- Department of MedicineWeill Cornell Medicine‐QatarDohaQatar
- College of MedicineQatar UniversityDohaQatar
- College of Health and Life SciencesHamad Bin Khalifa UniversityDohaQatar
- Department of MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| | - Shahab Uddin
- Translational Research Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Dermatology Institute, Academic Health SystemHamad Medical CorporationDohaQatar
- Laboratory of Animal Research CenterQatar UniversityDohaQatar
| |
Collapse
|
3
|
Khan A, Sayaf AM, Mohammad A, Alshabrmi FM, Benameur T, Wei DQ, Yeoh KK, Agouni A. Discovery of anti-Ebola virus multi-target inhibitors from traditional Chinese medicine database using molecular screening, biophysical investigation, and binding free energy calculations. J Infect Public Health 2025; 18:102636. [PMID: 39798213 DOI: 10.1016/j.jiph.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025] Open
Abstract
INTRODUCTION Ebola virus (EBOV) is a highly lethal RNA virus that causes severe hemorrhagic fever in humans and non-human primates. The lack of effective treatment or vaccine for this pathogen poses a serious threat to a global pandemic. Therefore, it is imperative to explore new drugs and therapies to combat this life-threatening infection. MATERIALS AND METHODS In this study, we employed in silico methods to assess the inhibitory activity of natural products from traditional Chinese medicine (TCM) against four EBOV proteins that are crucial for viral replication and assembly: VP40, VP35, VP30, and VP24. We performed molecular docking of TCM compounds with the EBOV proteins and screened them based on their docking scores, binding free energies, and pharmacokinetic properties. RESULTS Our results pinpointed eight TCM compounds (TCM1797, TCM2872, TCM250, TCM2837, TCM2644, TCM4697, TCM2322, and TCM277) that exhibited superior efficacy in inhibiting all the EBOV proteins compared to the controls. These compounds interacted with key residues of the EBOV proteins through various types of bonds, such as hydrogen bonds, salt bridges, and π-π interactions, forming stable complexes that could disrupt the function of the EBOV proteins. These compounds were found to possess known antiviral activity, acceptable pharmacokinetic properties, and human usage history, which make them promising candidates for anti-EBOV drug development. Moreover, the molecular simulation analysis confirmed the binding stability, structural compactness, and residue flexibility properties of these compounds. Furthermore, the binding free energy results revealed that VP30-TCM2644, VP30-TCM4697, VP35-TCM2837, VP24-TCM250, and VP24-TCM277 complexes exhibit significant binding free energy values compared to the control ligands. Principal Component Analysis (PCA) and Free Energy Landscape (FEL) results revealed the trajectories' motion and conformational energy states. CONCLUSIONS Our findings provide valuable insights into the molecular mechanisms driving the efficacy of TCM drugs against EBOV and suggest novel approaches for the development of anti-EBOV therapies.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Division of Bioinformatics, Department of Biomedical Sciences, School of Medical and Life Sciences, Sunway University, 5, Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | | | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahad M Alshabrmi
- Department of Medical laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kar Kheng Yeoh
- School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
4
|
Du S, Zhang XX, Gao X, He YB. Structure-based screening of FDA-approved drugs and molecular dynamics simulation to identify potential leukocyte antigen related protein (PTP-LAR) inhibitors. Comput Biol Chem 2024; 113:108264. [PMID: 39488935 DOI: 10.1016/j.compbiolchem.2024.108264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Leukocyte antigen related protein (LAR), a member of the PTP family, has become a potential target for exploring therapeutic interventions for various complex diseases, including neurodegenerative diseases. The reuse of FDA-approved drugs offers a promising approach for rapidly identifying potential LAR inhibitors. In this study, we conducted a structure-based virtual screening of FDA-approved drugs from ZINC database and selected candidate compounds based on their binding affinity and interactions with LAR. Our research revealed that the candidate compound ZINC6716957 exhibited excellent binding affinity to the binding pocket of LAR, formed interactions with key residues at the active site, and demonstrated low toxicity. To further understand the binding dynamics and interaction mechanisms, the 100-ns molecular dynamics simulations were performed. Post-dynamics analyses (RMSD, RMSF, SASA, hydrogen bond, binding free energy and free energy landscape) indicated that the compound ZINC6716957 stabilized the structure of LAR and the residues (Tyr1355, Arg1431, Lys1433, Arg1528, Tyr1563 and Thr1567) played a vital role in stabilizing the conformational changes of protein. In conclusion, the identified compound ZINC6716957 possessed robust inhibitory activity on LAR and merited extensive research, potentially unleashing its significant therapeutic potential in the treatment of complex diseases, particularly neurodegenerative disorders.
Collapse
Affiliation(s)
- Shan Du
- School of Pharmacy, Changzhi Medical College, 161 East Jiefang Street, Changzhi, Shanxi 046000, PR China
| | - Xin-Xin Zhang
- School of Pharmacy, Changzhi Medical College, 161 East Jiefang Street, Changzhi, Shanxi 046000, PR China
| | - Xiang Gao
- School of Pharmacy, Changzhi Medical College, 161 East Jiefang Street, Changzhi, Shanxi 046000, PR China
| | - Yan-Bin He
- School of Pharmacy, Changzhi Medical College, 161 East Jiefang Street, Changzhi, Shanxi 046000, PR China.
| |
Collapse
|
5
|
Suleman M, Moltrasio C, Tricarico PM, Marzano AV, Crovella S. Natural Compounds Targeting Thymic Stromal Lymphopoietin (TSLP): A Promising Therapeutic Strategy for Atopic Dermatitis. Biomolecules 2024; 14:1521. [PMID: 39766227 PMCID: PMC11673240 DOI: 10.3390/biom14121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with rising prevalence, marked by eczematous lesions, itching, and a weakened skin barrier often tied to filaggrin gene mutations. This breakdown allows allergen and microbe entry, with thymic stromal lymphopoietin (TSLP) playing a crucial role by activating immune pathways that amplify the allergic response. TSLP's central role in AD pathogenesis makes it a promising therapeutic target. Consequently, in this study, we used the virtual drug screening, molecular dynamics simulation, and binding free energies calculation approaches to explore the African Natural Product Database against the TSLP protein. The molecular screening identified four compounds with high docking scores, namely SA_0090 (-7.37), EA_0131 (-7.10), NA_0018 (-7.03), and WA_0006 (-6.99 kcal/mol). Furthermore, the KD analysis showed a strong binding affinity of these compounds with TSLP, with values of -5.36, -5.36, -5.34, and -5.32 kcal/mol, respectively. Moreover, the strong binding affinity of these compounds was further validated by molecular dynamic simulation analysis, which revealed that the WA_0006-TSLP is the most stable complex with the lowest average RMSD. However, the total binding free energies were -40.5602, -41.0967, -27.3293, and -51.3496 kcal/mol, respectively, showing the strong interaction between the selected compounds and TSLP. Likewise, these compounds showed excellent pharmacokinetics characteristics. In conclusion, this integrative approach provides a foundation for the development of safe and effective treatments for AD, potentially offering relief to millions of patients worldwide.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha 2713, Qatar;
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.M.); (A.V.M.)
| | - Paola Maura Tricarico
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.M.); (A.V.M.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha 2713, Qatar;
| |
Collapse
|
6
|
Chen J, Zhang Y, Zhang B, Wang Z. In Vitro Characterization of Inhibition Function of Calcifediol to the Protease Activity of SARS-COV-2 PLpro. J Med Virol 2024; 96:e70085. [PMID: 39588768 DOI: 10.1002/jmv.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024]
Abstract
Vitamin D3 and its metabolites calcifediol have been recommended as effective drugs for novel coronavirus disease 2019 (COVID-19) therapy in many studies, since the outbreak of this global dramatic pandemic. In this study, we made a striking discovery that Calcifediol demonstrates robust inhibitive effect on the of the papain-like cysteine protease (PLpro), a critical proteolytic enzyme for the severe acute respiratory syndrome coronavirus-2(SARS-COV-2), through a small-scale FRET-based screening experiment. The practical bindings of Calcifediol to PLpro were also demonstrated by several in vitro interaction studies. All the evidence had revealed the inhibition might be caused by the targeted binding event. Consequently, our discovery represents a significant finding that the beneficial therapeutic impact of Calcifediol on COVID-19 may be attributed not only to its immunoregulatory properties but also to its inhibition of PLpro. This finding strongly bolsters the case for the clinical use of Vitamin D3 and its derivative Calcifediol in the treatment of COVID-19.
Collapse
Affiliation(s)
- Junjie Chen
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yaya Zhang
- Department of Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Bingchang Zhang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Suleman M, Murshed A, Imran K, Khan A, Ali Z, Albekairi NA, Wei DQ, Yassine HM, Crovella S. Abrogation of ORF8-IRF3 binding interface with Carbon nanotube derivatives to rescue the host immune system against SARS-CoV-2 by using molecular screening and simulation approaches. BMC Chem 2024; 18:99. [PMID: 38734638 PMCID: PMC11088783 DOI: 10.1186/s13065-024-01185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to over six million deaths worldwide. In human immune system, the type 1 interferon (IFN) pathway plays a crucial role in fighting viral infections. However, the ORF8 protein of the virus evade the immune system by interacting with IRF3, hindering its nuclear translocation and consequently downregulate the type I IFN signaling pathway. To block the binding of ORF8-IRF3 and inhibit viral pathogenesis a quick discovery of an inhibitor molecule is needed. Therefore, in the present study, the interface between the ORF8 and IRF3 was targeted on a high-affinity carbon nanotube by using computational tools. After analysis of 62 carbon nanotubes by multiple docking with the induced fit model, the top five compounds with high docking scores of - 7.94 kcal/mol, - 7.92 kcal/mol, - 7.28 kcal/mol, - 7.19 kcal/mol and - 7.09 kcal/mol (top hit1-5) were found to have inhibitory activity against the ORF8-IRF3 complex. Molecular dynamics analysis of the complexes revealed the high compactness of residues, stable binding, and strong hydrogen binding network among the ORF8-nanotubes complexes. Moreover, the total binding free energy for top hit1-5 was calculated to be - 43.21 ± 0.90 kcal/mol, - 41.17 ± 0.99 kcal/mol, - 48.85 ± 0.62 kcal/mol, - 43.49 ± 0.77 kcal/mol, and - 31.18 ± 0.78 kcal/mol respectively. These results strongly suggest that the identified top five nanotubes (hit1-5) possess significant potential for advancing and exploring innovative drug therapies. This underscores their suitability for subsequent in vivo and in vitro experiments, marking them as promising candidates worthy of further investigation.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Abduh Murshed
- Department of Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Kashif Imran
- Services Institute of Medical Sciences, Lahore, Pakistan
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- School of Medical and Life Sciences, Sunway University, 47500, Sunway City, Malaysia
| | - Zafar Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, 11451, Riyadh, Saudi Arabia
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, 2713, Doha, Qatar.
- College of Health Sciences-QU Health, Qatar University, 2713, Doha, Qatar.
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar.
| |
Collapse
|
8
|
Deng M, Zhang C, Yan W, Chen L, He B, Li Y. Development of Fluorescence-Based Assays for Key Viral Proteins in the SARS-CoV-2 Infection Process and Lifecycle. Int J Mol Sci 2024; 25:2850. [PMID: 38474097 DOI: 10.3390/ijms25052850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Since the appearance of SARS-CoV-2 in 2019, the ensuing COVID-19 (Corona Virus Disease 2019) pandemic has posed a significant threat to the global public health system, human health, life, and economic well-being. Researchers worldwide have devoted considerable efforts to curb its spread and development. The latest studies have identified five viral proteins, spike protein (Spike), viral main protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), and viral helicase (Helicase), which play crucial roles in the invasion of SARS-CoV-2 into the human body and its lifecycle. The development of novel anti-SARS-CoV-2 drugs targeting these five viral proteins holds immense promise. Therefore, the development of efficient, high-throughput screening methodologies specifically designed for these viral proteins is of utmost importance. Currently, a plethora of screening techniques exists, with fluorescence-based assays emerging as predominant contenders. In this review, we elucidate the foundational principles and methodologies underpinning fluorescence-based screening approaches directed at these pivotal viral targets, hoping to guide researchers in the judicious selection and refinement of screening strategies, thereby facilitating the discovery and development of lead compounds for anti-SARS-CoV-2 pharmaceuticals.
Collapse
Affiliation(s)
- Mingzhenlong Deng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Chuang Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Wanli Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
9
|
Suleman M, Ishaq I, Khan H, Ullah khan S, Masood R, Albekairi NA, Alshammari A, Crovella S. Elucidating the binding mechanism of SARS-CoV-2 NSP6-TBK1 and structure-based designing of phytocompounds inhibitors for instigating the host immune response. Front Chem 2024; 11:1346796. [PMID: 38293247 PMCID: PMC10824840 DOI: 10.3389/fchem.2023.1346796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
SARS-CoV-2, also referred to as severe acute respiratory syndrome coronavirus 2, is the virus responsible for causing COVID-19, an infectious disease that emerged in Wuhan, China, in December 2019. Among its crucial functions, NSP6 plays a vital role in evading the human immune system by directly interacting with a receptor called TANK-binding kinase (TBK1), leading to the suppression of IFNβ production. Consequently, in the present study we used the structural and biophysical approaches to analyze the effect of newly emerged mutations on the binding of NSP6 and TBK1. Among the identified mutations, four (F35G, L37F, L125F, and I162T) were found to significantly destabilize the structure of NSP6. Furthermore, the molecular docking analysis highlighted that the mutant NSP6 displayed its highest binding affinity with TBK1, exhibiting docking scores of -1436.2 for the wildtype and -1723.2, -1788.6, -1510.2, and -1551.7 for the F35G, L37F, L125F, and I162T mutants, respectively. This suggests the potential for an enhanced immune system evasion capability of NSP6. Particularly, the F35G mutation exhibited the strongest binding affinity, supported by a calculated binding free energy of -172.19 kcal/mol. To disrupt the binding between NSP6 and TBK1, we conducted virtual drug screening to develop a novel inhibitor derived from natural products. From this screening, we identified the top 5 hit compounds as the most promising candidates with a docking score of -6.59 kcal/mol, -6.52 kcal/mol, -6.32 kcal/mol, -6.22 kcal/mol, and -6.21 kcal/mol. The molecular dynamic simulation of top 3 hits further verified the dynamic stability of drugs-NSP6 complexes. In conclusion, this study provides valuable insight into the higher infectivity of the SARS-CoV-2 new variants and a strong rationale for the development of novel drugs against NSP6.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Iqra Ishaq
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Haji Khan
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Safir Ullah khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rehana Masood
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Suleman M, Ahmad T, shah K, Albekairi NA, Alshammari A, Khan A, Wei DQ, Yassine HM, Crovella S. Exploring the natural products chemical space to abrogate the F3L-dsRNA interface of monkeypox virus to enhance the immune responses using molecular screening and free energy calculations. Front Pharmacol 2024; 14:1328308. [PMID: 38269277 PMCID: PMC10805857 DOI: 10.3389/fphar.2023.1328308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Amid the ongoing monkeypox outbreak, there is an urgent need for the rapid development of effective therapeutic interventions capable of countering the immune evasion mechanisms employed by the monkeypox virus (MPXV). The evasion strategy involves the binding of the F3L protein to dsRNA, resulting in diminished interferon (IFN) production. Consequently, our current research focuses on utilizing virtual drug screening techniques to target the RNA binding domain of the F3L protein. Out of the 954 compounds within the South African natural compound database, only four demonstrated notable docking scores: -6.55, -6.47, -6.37, and -6.35 kcal/mol. The dissociation constant (KD) analysis revealed a stronger binding affinity of the top hits 1-4 (-5.34, -5.32, -5.29, and -5.36 kcal/mol) with the F3L in the MPXV. All-atom simulations of the top-ranked hits 1 to 4 consistently exhibited stable dynamics, suggesting their potential to interact effectively with interface residues. This was further substantiated through analyses of parameters such as radius of gyration (Rg), Root Mean Square Fluctuation, and hydrogen bonding. Cumulative assessments of binding free energy confirmed the top-performing candidates among all the compounds, with values of -35.90, -52.74, -28.17, and -32.11 kcal/mol for top hits 1-4, respectively. These results indicate that compounds top hit 1-4 could hold significant promise for advancing innovative drug therapies, suggesting their suitability for both in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Muhammad Suleman
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Tanveer Ahmad
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Khadim shah
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abbas Khan
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Dong-Qing Wei
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hadi M. Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
- College of Health Sciences-QU Health, Qatar University, Doha, Qatar
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar
| |
Collapse
|
11
|
Khan A, Liaqat A, Masood A, Ali SS, Ali L, Alshammari A, Alasmari AF, Mohammad A, Waheed Y, Wei DQ. Exploring the medicinal potential of Dark Chemical Matters (DCM) to design promising inhibitors for PLpro of SARS-CoV-2 using molecular screening and simulation approaches. Saudi Pharm J 2023; 31:101775. [PMID: 37719892 PMCID: PMC10504533 DOI: 10.1016/j.jsps.2023.101775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023] Open
Abstract
The growing concerns and cases of COVID-19 with the appearance of novel variants i.e., BA.2.75. BA.5 and XBB have prompted demand for more effective treatment options that could overcome the risk of immune evasion. For this purpose, discovering novel small molecules to inhibit druggable proteins such as PLpro required for viral pathogenesis, replication, survival, and spread is the best choice. Compounds from the Dark chemical matter (DCM) database is consistently active in various screening tests and offer intriguing possibilities for finding drugs that are extremely selective or active against uncommon targets. Considering the essential role of PLpro, the current study uses DCMdatabase for the identification of potential hits using in silico virtual molecular screening and simulation approaches to inhibit the current and emerging variants of SARS-CoV-2. Our results revealed the 10 best compounds with docking scores between -7.99 to -7.03 kcal/mol better than the control drug (GRL0617) among which DC 5977-0726, DC 6623-2024, DC C879-0379 and DC D135-0154 were observed as the best hits. Structural-dynamics properties such as dynamic stability, protein packing, and residue flexibility demonstrated the pharmacologically favorable properties of these top hits in contrast to GRL0617. The hydrogen bonding half-life revealed that Asp164, Arg166, Tyr264, and Tyr268 have major contributions to the hydrogen bonding during the simulation. However, some of the important hydrogen bonds were missing in the control drug (GRL0617). Finally, the total binding free energy was reported to be -34.41 kcal/mol for GRL0617 (control), -41.03 kcal/mol for the DC5977-0726-PLpro, for the DC6623-2024-Plpro complex the TBE was -48.87 kcal/mol, for the for DCC879-0379-Plpro complex the TBE was -45.66 kcal/mol while for the DCD135-0154-PLpro complex the TBE was calculated to be -40.09 kcal/mol respectively, which shows the stronger potency of these compounds against PLpro and further in in vivo and in vitro test are required for the possible usage as potential drug against SARS-CoV-2.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan 473006, PR China
| | - Ayesha Liaqat
- King Edward Medical University Lahore, Punjab, Pakistan
| | - Adan Masood
- University Medical and Dental College, Faisalabad, Punjab, Pakistan
| | - Syed Shujait Ali
- Centre for Biotechnology and Microbiology, University of Swat, Khyber Pakhtunkhwa, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences (NUMS). Rawalpindi, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan 473006, PR China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong 518055, PR China
| |
Collapse
|