1
|
Chen X, Feng Y, Quinn RJ, Pountney DL, Richardson DR, Mellick GD, Ma L. Potassium Channels in Parkinson's Disease: Potential Roles in Its Pathogenesis and Innovative Molecular Targets for Treatment. Pharmacol Rev 2023; 75:758-788. [PMID: 36918260 DOI: 10.1124/pharmrev.122.000743] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the midbrain. The loss of neurons results in a subsequent reduction of dopamine in the striatum, which underlies the core motor symptoms of PD. To date, there are no effective treatments to stop, slow, or reverse the pathologic progression of dopaminergic neurodegeneration. This unfortunate predicament is because of the current early stages in understanding the biologic targets and pathways involved in PD pathogenesis. Ion channels have become emerging targets for new therapeutic development for PD due to their essential roles in neuronal function and neuroinflammation. Potassium channels are the most prominent ion channel family and have been shown to be critically important in PD pathology because of their roles in modulating neuronal excitability, neurotransmitter release, synaptic transmission, and neuroinflammation. In this review, members of the subfamilies of voltage-gated K+ channels, inward rectifying K+ channels, and Ca2+-activated K+ channels are described. Evidence of the role of these channels in PD etiology is discussed together with the latest views on related pathologic mechanisms and their potential as biologic targets for developing neuroprotective drugs for PD. SIGNIFICANCE STATEMENT: Parkinson's disease (PD) is the second most common neurodegenerative disorder, featuring progressive degeneration of dopaminergic neurons in the midbrain. It is a multifactorial disease involving multiple risk factors and complex pathobiological mechanisms. Mounting evidence suggests that ion channels play vital roles in the pathogenesis and progression of PD by regulating neuronal excitability and immune cell function. Therefore, they have become "hot" biological targets for PD, as demonstrated by multiple clinical trials of drug candidates targeting ion channels for PD therapy.
Collapse
Affiliation(s)
- Xiaoyi Chen
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Yunjiang Feng
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Ronald J Quinn
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Dean L Pountney
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Des R Richardson
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - George D Mellick
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| | - Linlin Ma
- School of Environment and Science (Y.F., D.R.R., G.D.M., L.M.) and Centre for Cancer Cell Biology and Drug Discovery (D.R.R.), Griffith Institute for Drug Discovery (X.C., Y.F., R.J.Q., D.R.R., G.D.M., L.M.), Griffith University, Nathan, Brisbane, Queensland, Australia; and School of Pharmacy and Medical Science, Griffith University, Gold Coast, Queenslandstate, Australia (D.L.P.)
| |
Collapse
|
4
|
Aschner M, Erikson KM, Herrero Hernández E, Hernández EH, Tjalkens R. Manganese and its role in Parkinson's disease: from transport to neuropathology. Neuromolecular Med 2009; 11:252-66. [PMID: 19657747 PMCID: PMC4613768 DOI: 10.1007/s12017-009-8083-0] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 07/24/2009] [Indexed: 01/03/2023]
Abstract
The purpose of this review is to highlight recent advances in the neuropathology associated with Mn exposures. We commence with a discussion on occupational manganism and clinical aspects of the disorder. This is followed by novel considerations on Mn transport (see also chapter by Yokel, this volume), advancing new hypotheses on the involvement of several transporters in Mn entry into the brain. This is followed by a brief description of the effects of Mn on neurotransmitter systems that are putative modulators of dopamine (DA) biology (the primary target of Mn neurotoxicity), as well as its effects on mitochondrial dysfunction and disruption of cellular energy metabolism. Next, we discuss inflammatory activation of glia in neuronal injury and how disruption of synaptic transmission and glial-neuronal communication may serve as underlying mechanisms of Mn-induced neurodegeneration commensurate with the cross-talk between glia and neurons. We conclude with a discussion on therapeutic aspects of Mn exposure. Emphasis is directed at treatment modalities and the utility of chelators in attenuating the neurodegenerative sequelae of exposure to Mn. For additional reading on several topics inherent to this review as well as others, the reader may wish to consult Aschner and Dorman (Toxicological Review 25:147-154, 2007) and Bowman et al. (Metals and neurodegeneration, 2009).
Collapse
Affiliation(s)
- Michael Aschner
- Departments of Pediatrics and Pharmacology and the Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, 2215-B Garland Avenue, 11425 MRB IV, Nashville, TN, 37232-0414, USA.
| | | | | | | | | |
Collapse
|