1
|
Ding H, Yin C, Yang M, Zhou R, Wang X, Pan X. Screening of differentially methylated genes in skeletal fluorosis of rats with different types and involvement of aberrant methylation of Cthrc1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121931. [PMID: 37268221 DOI: 10.1016/j.envpol.2023.121931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
Fluoride is a widespread pollutant in the environment. There is a high risk of developing skeletal fluorosis from excessive fluoride exposure. Skeletal fluorosis has different phenotypes (including osteosclerotic, osteoporotic and osteomalacic) under the same fluoride exposure and depends on dietary nutrition. However, the existing mechanistic hypothesis of skeletal fluorosis cannot well explain the condition's different pathological manifestations and their logical relation with nutritional factors. Recent studies have shown that DNA methylation is involved in the occurrence and development of skeletal fluorosis. DNA methylation is dynamic throughout life and may be affected by nutrition and environmental factors. We speculated that fluoride exposure leads to the abnormal methylation of genes related to bone homeostasis under different nutritional statuses, resulting in different skeletal fluorosis phenotypes. The mRNA-Seq and target bisulfite sequencing (TBS) result showed differentially methylated genes in rats with different skeletal fluorosis types. The role of the differentially methylated gene Cthrc1 in the formation of different skeletal fluorosis types was explored in vivo and in vitro. Under normal nutritional conditions, fluoride exposure led to hypomethylation and high expression of Cthrc1 in osteoblasts through TET2 demethylase, which promoted osteoblast differentiation by activating Wnt3a/β-catenin signalling pathway, and participated in the occurrence of osteosclerotic skeletal fluorosis. Meanwhile, the high CTHRC1 protein expression also inhibited osteoclast differentiation. Under poor dietary conditions, fluoride exposure led to hypermethylation and low expression of Cthrc1 in osteoblasts through DNMT1 methyltransferase, and increased the RANKL/OPG ratio, which promoted the osteoclast differentiation and participated in the occurrence of osteoporotic/osteomalacic skeletal fluorosis. Our study expands the understanding of the role of DNA methylation in regulating the formation of different skeletal fluorosis types and provides insights into new prevention and treatment strategies for patients with skeletal fluorosis.
Collapse
Affiliation(s)
- Hongwei Ding
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Congyu Yin
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Menglan Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Ruiqi Zhou
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xilan Wang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Xueli Pan
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
2
|
Pereira AG, Chiba FY, de Lima Coutinho Mattera MS, Pereira RF, de Cássia Alves Nunes R, Tsosura TVS, Okamoto R, Sumida DH. Effects of fluoride on insulin signaling and bone metabolism in ovariectomized rats. J Trace Elem Med Biol 2017; 39:140-146. [PMID: 27908407 DOI: 10.1016/j.jtemb.2016.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 01/10/2023]
Abstract
Fluoride is an essential trace element for the maintenance of bone health owing to its capacity to stimulate proliferation and osteoblastic activity that can lead to increased bone formation. However, excessive sodium fluoride (NaF) intake can impair carbohydrate metabolism thereby promoting hyperglycemia, insulin resistance, and changes in insulin signaling. Thus, this study aimed to evaluate the effect of chronic treatment with NaF in bone metabolism, insulin signaling, and plasma concentrations of glucose, insulin, tumor necrosis factor-α (TNF-α), osteocalcin (OCN), and fluoride in ovariectomized rats. Thirty-two ovariectomized Wistar rats were randomly distributed into two groups: Control (OVX-C) and those undergoing treatment with NaF (50mg F/L) in drinking water for 42days (OVX-F). Glucose and insulin levels were assessed, followed by homeostasis model assessment of insulin resistance (HOMA-IR). Akt serine phosphorylation was evaluated by western blotting. Plasma concentrations of TNF-α and OCN were evaluated by ELISA. The left and right tibia was collected for immunohistochemical and histomorphometric analysis, respectively. Chronic treatment with NaF promoted insulin resistance, decreased insulin signal, increased plasma concentration of insulin, fluoride, OCN and TNF-α, decreased trabecular bone area of the tibia, and caused changes in bone metabolism markers in ovariectomized rats. These results suggest the need for caution in the use of NaF for the treatment of osteoporosis, especially in postmenopausal woman.
Collapse
Affiliation(s)
- Amanda Gomes Pereira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis - Department of Basic Sciences - Araçatuba Dental School, UNESP - Univ Estadual Paulista, Rua José Bonifácio 1193. CEP 16015-050, Brazil
| | - Fernando Yamamoto Chiba
- Department of Child and Social Dentistry - Araçatuba Dental School, UNESP - Univ Estadual Paulista, Rua José Bonifácio 1193. CEP 16015-050, Brazil.
| | - Maria Sara de Lima Coutinho Mattera
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis - Department of Basic Sciences - Araçatuba Dental School, UNESP - Univ Estadual Paulista, Rua José Bonifácio 1193. CEP 16015-050, Brazil
| | - Renato Felipe Pereira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis - Department of Basic Sciences - Araçatuba Dental School, UNESP - Univ Estadual Paulista, Rua José Bonifácio 1193. CEP 16015-050, Brazil
| | - Rita de Cássia Alves Nunes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis - Department of Basic Sciences - Araçatuba Dental School, UNESP - Univ Estadual Paulista, Rua José Bonifácio 1193. CEP 16015-050, Brazil
| | - Thaís Verônica Saori Tsosura
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis - Department of Basic Sciences - Araçatuba Dental School, UNESP - Univ Estadual Paulista, Rua José Bonifácio 1193. CEP 16015-050, Brazil
| | - Roberta Okamoto
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis - Department of Basic Sciences - Araçatuba Dental School, UNESP - Univ Estadual Paulista, Rua José Bonifácio 1193. CEP 16015-050, Brazil
| | - Doris Hissako Sumida
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis - Department of Basic Sciences - Araçatuba Dental School, UNESP - Univ Estadual Paulista, Rua José Bonifácio 1193. CEP 16015-050, Brazil
| |
Collapse
|
3
|
Liu J, Rawlinson SC, Hill RG, Fortune F. Fluoride incorporation in high phosphate containing bioactive glasses and in vitro osteogenic, angiogenic and antibacterial effects. Dent Mater 2016; 32:e221-e237. [DOI: 10.1016/j.dental.2016.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
|
4
|
Iwatsuki M, Matsuoka M. Fluoride-induced c-Fos expression in MC3T3-E1 osteoblastic cells. Toxicol Mech Methods 2016; 26:132-8. [DOI: 10.3109/15376516.2015.1129570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mamiko Iwatsuki
- Department of Hygiene and Public Health I, Tokyo Women’s Medical University, Tokyo, Japan
| | - Masato Matsuoka
- Department of Hygiene and Public Health I, Tokyo Women’s Medical University, Tokyo, Japan
| |
Collapse
|
5
|
Zhang C, Peng J, Wu S, Jin Y, Xia F, Wang C, Liu K, Sun H, Liu M. Dioscin promotes osteoblastic proliferation and differentiation via Lrp5 and ER pathway in mouse and human osteoblast-like cell lines. J Biomed Sci 2014; 21:30. [PMID: 24742230 PMCID: PMC4014146 DOI: 10.1186/1423-0127-21-30] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/31/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Dioscin, a typical steroid saponin, is isolated from Dioscorea nipponica Makino and Dioscorea zingiberensis Wright. It has estrogenic activity and many studies have also reported that dioscorea plants have an effect in preventing and treating osteoporosis. However, the molecular mechanisms underlying their effect on osteoporosis treatment are poorly understood. Therefore, the present study aims to investigate the mechanism (s) by which dioscin promotes osteoblastic proliferation and differentiation in mouse pre-osteoblast like MC3T3-E1 cells and human osteoblast-like MG-63 cells. RESULTS We found that dioscin (0.25 μg/ml, 0.5 μg/ml, and 1.0 μg/ml) promoted MC3T3-E1 cells and MG-63 cells proliferation and differentiation dose dependently. Western blot analysis results showed that estrogen receptor α (ER-α), estrogen receptor β (ER-β), β-catenin and Bcl-2 protein expression increased after MC3T3-E1 cells were treated with dioscin. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that dioscin could increase the ratio of osteoprotegerin (OPG)/receptor activator of NF-κB ligand (RANKL) and up-regulate the level of Lrp5 and β-catenin. And by RNA interference analysis, we proved that the effect of dioscin increasing the ratio of OPG/RANKL was dependent on Lrp5 pathway. In addition, we also found that these effects of dioscin were abolished by ICI 182, 780 (100 nM), an antagonist of ER, indicating that an ER signaling pathway was also involved. We also found that dioscin (0.25 μg/ml, 0.5 μg/ml, and 1.0 μg/ml) induced MG-63 cells proliferation and differentiation in a dose-dependent manner. Western blot analysis results indicated that ER-α, ER-β and β-catenin protein expression increased after MG-63 cells were treated with dioscin. CONCLUSIONS The current study is the first to reveal that dioscin can promote osteoblasts proliferation and differentiation via Lrp5 and ER pathway.
Collapse
Affiliation(s)
- Chunfang Zhang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shan Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Fan Xia
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Mozhen Liu
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Wei M, Duan D, Liu Y, Wang Z, Li Z. Autophagy may protect MC3T3-E1 cells from fluoride-induced apoptosis. Mol Med Rep 2014; 9:2309-15. [PMID: 24682525 DOI: 10.3892/mmr.2014.2079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 02/04/2014] [Indexed: 11/05/2022] Open
Abstract
Fluoride is an essential trace element for all mammalian species; however, excess fluoride intake is known to be toxic to cells in animals and humans. The toxicity of fluoride is mainly exerted via induction of apoptosis. Autophagy is induced by numerous cytotoxic stimuli; however, it is often unclear whether, under specific conditions, autophagy has a pro‑survival or a pro‑apoptotic role. To answer this critical question, the present study assessed autophagy and apoptosis simultaneously in single cells. It was demonstrated that fluoride was able to inhibit cell proliferation and induce apoptosis and autophagy, whereas autophagy appeared to be protective. Further analysis revealed that MAPK/JNK‑dependent autophagy may be protective in fluoride‑induced apoptosis. It is anticipated that the presented single‑cell approach may be a powerful tool for gaining a quantitative understanding of the complex regulation of autophagy, its effect on cell fate and its association with other cellular pathways.
Collapse
Affiliation(s)
- Min Wei
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Dongmei Duan
- Department of Traditional Chinese Medicine, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yujie Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhigang Wang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhongli Li
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
7
|
Agalakova NI, Gusev GP. Molecular Mechanisms of Cytotoxicity and Apoptosis Induced by Inorganic Fluoride. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/403835] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fluoride (F) is ubiquitous natural substance and widespread industrial pollutant. Although low fluoride concentrations are beneficial for normal tooth and bone development, acute or chronic exposure to high fluoride doses results in adverse health effects. The molecular mechanisms underlying fluoride toxicity are different by nature. Fluoride is able to stimulate G-proteins with subsequent activation of downstream signal transduction pathways such as PKA-, PKC-, PI3-kinase-, Ca2+-, and MAPK-dependent systems. G-protein-independent routes include tyrosine phosphorylation and protein phosphatase inhibition. Along with other toxic effects, fluoride was shown to induce oxidative stress leading to excessive generation of ROS, lipid peroxidation, decrease in the GSH/GSSH ratio, and alterations in activities of antioxidant enzymes, as well as to inhibit glycolysis thus causing the depletion of cellular ATP and disturbances in cellular metabolism. Fluoride triggers the disruption of mitochondria outer membrane and release of cytochrome c into cytosol, what activates caspases-9 and -3 (intrinsic) apoptotic pathway. Extrinsic (death receptor) Fas/FasL-caspase-8 and -3 pathway was also described to be implicated in fluoride-induced apoptosis. Fluoride decreases the ratio of antiapoptotic/proapoptotic Bcl-2 family proteins and upregulates the expression of p53 protein. Finally, fluoride changes the expression profile of apoptosis-related genes and causes endoplasmic reticulum stress leading to inhibition of protein synthesis.
Collapse
Affiliation(s)
- Natalia Ivanovna Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 M. Thorez Avenue, Sankt-Petersburg 194223, Russia
| | - Gennadii Petrovich Gusev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 M. Thorez Avenue, Sankt-Petersburg 194223, Russia
| |
Collapse
|