1
|
Duarte-Silva E, Maes M, Alves Peixoto C. Iron metabolism dysfunction in neuropsychiatric disorders: Implications for therapeutic intervention. Behav Brain Res 2025; 479:115343. [PMID: 39557130 DOI: 10.1016/j.bbr.2024.115343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Iron is a trace metal that takes part in the maintenance of body homeostasis by, for instance, aiding in energy production and immunity. A body of evidence now demonstrates that dysfunction in iron metabolism can have detrimental effects and is intricately associated with the development of neuropsychiatric disorders, including Major Depressive Disorder (MDD), anxiety, and schizophrenia. For instance, changes in serum and central nervous system (CNS) levels of iron and in proteins mediating iron metabolism have been documented in patients grappling with the aforementioned diseases. By contrast, targeting iron metabolism by using iron chelators, for instance, has proven to be effective in alleviating disease burden. Therefore, here we review the state-of-the-art regarding the role of iron metabolism and its dysfunction in the context of neuropsychiatric disorders. Furthermore, we discuss how targeting iron metabolism can be an effective therapeutic option to tackle this class of diseases. Finally, we discuss the mechanisms linking this dysfunction to behavioral changes in these disorders. Harnessing the knowledge of iron metabolism is not only key to the characterization of novel molecular targets and disease biomarkers but also crucial to drug repurposing and drug design.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Department of Pharmacology, University of São Paulo, São Paulo, Brazil; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Ribeirão Preto, SP, Brazil.
| | - Michael Maes
- Mental Health Center, University of Electronic Science and Technology of China, Chengdu 611731, China; Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia; Research Institute, Medical University of Plovdiv, Plovdiv 4002, Bulgaria; Department of Psychiatry, Medical University of Plovdiv, Plovdiv 4002, Bulgaria; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Guo S, Yang C, Jiang S, Ni Y, Zhao R, Ma W. Repeated Restraint Stress Enhances Hepatic TFR2 Expression and Induces Hepatic Iron Accumulation in Rats. Biol Trace Elem Res 2020; 196:590-596. [PMID: 31707638 DOI: 10.1007/s12011-019-01956-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/24/2019] [Indexed: 12/26/2022]
Abstract
Abnormal hepatic iron metabolism is detrimental to health. The objective of this study was to detect repeated restraint stress on liver iron metabolism in rats. Twenty-four male rats aged 7 weeks were randomly divided into 2 groups: control group (Con) and repeated restraint stress group (RS). Rats were subjected to 6 h of daily restraint stress for 14 consecutive days in the repeated restraint stress group. The results showed that repeated restraint stress exposure decreased growth performance including impaired final weight (P = 0.07), reducing average daily gain (P = 0.01), and average daily feed intake (P = 0.00) during the 14-day experimental period. Repeated restraint stress exposure did not affect hemoglobin content and plasma iron parameters except downregulated unsaturated iron-binding capacity (P = 0.04). Repeated restraint stress exposure inhibited liver development (P = 0.03) and induced liver iron accumulation (P = 0.05). In addition, repeated restraint stress downregulated the expression of transferrin (TF) and transferrin receptor 2 (TFR2) at the mRNA level (P < 0.01), but upregulated at the protein level (P = 0.03 for TF; P = 0.00 for TFR2). These results indicated that repeated restraint stress induces hepatic iron accumulation, which is closely related to higher expression of hepatic TFR2 protein in rats.
Collapse
Affiliation(s)
- Shihui Guo
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Chun Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Shuxia Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China.
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Li H, Zhang C, Shen H, Shen Z, Wu L, Mo F, Li M. Physiological stress-induced corticosterone increases heme uptake via KLF4-HCP1 signaling pathway in hippocampus neurons. Sci Rep 2017; 7:5745. [PMID: 28720846 PMCID: PMC5515979 DOI: 10.1038/s41598-017-06058-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/07/2017] [Indexed: 11/10/2022] Open
Abstract
Iron overload has attracted much attention because of its adverse effect in increasing the risk of developing several neurodegenerative disorders. Under various pathologic conditions, a lot of heme are released. The aggregation of heme is more neurotoxic than that of iron released from the heme breakdown. Our previous studies demonstrated that psychological stress (PS) is a risk factor of cerebral iron metabolism disorders, thus causing iron accumulation in rat brains. In the present study, we found PS could increase heme uptake via heme carrier protein 1 (HCP1) in rat brains. We demonstrated that Glucocorticoid (GC), which is largely secreted under stress, could up-regulate HCP1 expression, thus promoting heme uptake in neurons. We also ascertained that HCP1 expression can be induced by GC through a transcription factor, Krüppel-like factor 4 (KLF4). These results may gain new insights into the etiology of heme uptake and iron accumulation in PS rats, and find new therapeutic targets of iron accumulation in Parkinson’s disease or Alzheimer’s disease.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Caixia Zhang
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.,Department of Nursing, People's Libration Army of 266 Hospital, Chengde City, Hubei, 067000, China
| | - Hui Shen
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Zhilei Shen
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Lusha Wu
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Fengfeng Mo
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| | - Min Li
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Effect of dietary iron loading on recognition memory in growing rats. PLoS One 2015; 10:e0120609. [PMID: 25746420 PMCID: PMC4352024 DOI: 10.1371/journal.pone.0120609] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/26/2015] [Indexed: 11/22/2022] Open
Abstract
While nutritional and neurobehavioral problems are associated with both iron deficiency during growth and overload in the elderly, the effect of iron loading in growing ages on neurobehavioral performance has not been fully explored. To characterize the role of dietary iron loading in memory function in the young, weanling rats were fed iron-loading diet (10,000 mg iron/kg diet) or iron-adequate control diet (50 mg/kg) for one month, during which a battery of behavioral tests were conducted. Iron-loaded rats displayed elevated non-heme iron levels in serum and liver, indicating a condition of systemic iron overload. In the brain, non-heme iron was elevated in the prefrontal cortex of iron-loaded rats compared with controls, whereas there was no difference in iron content in other brain regions between the two diet groups. While iron loading did not alter motor coordination or anxiety-like behavior, iron-loaded rats exhibited a better recognition memory, as represented by an increased novel object recognition index (22% increase from the reference value) than control rats (12% increase; P=0.047). Western blot analysis showed an up-regulation of dopamine receptor 1 in the prefrontal cortex from iron-loaded rats (142% increase; P=0.002). Furthermore, levels of glutamate receptors (both NMDA and AMPA) and nicotinic acetylcholine receptor (nAChR) were significantly elevated in the prefrontal cortex of iron-loaded rats (62% increase in NR1; 70% increase in Glu1A; 115% increase in nAChR). Dietary iron loading also increased the expression of NMDA receptors and nAChR in the hippocampus. These results support the idea that iron is essential for learning and memory and further reveal that iron supplementation during developmental and rapidly growing periods of life improves memory performance. Our investigation also demonstrates that both cholinergic and glutamatergic neurotransmission pathways are regulated by dietary iron and provides a molecular basis for the role of iron loading in improved memory.
Collapse
|
5
|
McCormick SP, Chakrabarti M, Cockrell AL, Park J, Lindahl LS, Lindahl PA. Low-molecular-mass metal complexes in the mouse brain. Metallomics 2013; 5:232-41. [PMID: 23443205 DOI: 10.1039/c3mt00009e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The presence of labile low-molecular-mass (LMM, defined as <10 kDa) metal complexes in cells and super-cellular structures such as the brain has been inferred from chelation studies, but direct evidence is lacking. To evaluate the presence of LMM metal complexes in the brain, supernatant fractions of fresh mouse brain homogenates were passed through a 10 kDa cutoff membrane and subjected to size-exclusion liquid chromatography under anaerobic refrigerated conditions. Fractions were monitored for Mn, Fe, Co, Cu, Zn, Mo, S and P using an on-line ICP-MS. At least 30 different LMM metal complexes were detected along with numerous P- and S- containing species. Reproducibility was assessed by performing the experiment 13 times, using different buffers, and by examining whether complexes changed with time. Eleven Co, 2 Cu, 5 Mn, 4 Mo, 3 Fe and 2 Zn complexes with molecular masses <4 kDa were detected. One LMM Mo complex comigrated with the molybdopterin cofactor. Most Cu and Zn complexes appeared to be protein-bound with masses ranging from 4-20 kDa. Co was the only metal for which the "free" or aqueous complex was reproducibly observed. Aqueous Co may be sufficiently stable in this environment due to its relatively slow water-exchange kinetics. Attempts were made to assign some of these complexes, but further efforts will be required to identify them unambiguously and to determine their functions. This is among the first studies to detect low-molecular-mass transition metal complexes in the mouse brain using LC-ICP-MS.
Collapse
Affiliation(s)
- Sean P McCormick
- Texas A&M University, Department of Chemistry, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
6
|
In vitro neurotoxic Fe(III) and Fe(III)-chelator activities in rat hippocampal cultures. From neurotoxicity to neuroprotection prospects. J Inorg Biochem 2012; 117:342-50. [PMID: 23010074 DOI: 10.1016/j.jinorgbio.2012.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/15/2012] [Accepted: 08/17/2012] [Indexed: 11/22/2022]
Abstract
It is well known that iron dysregulation is involved in a number of processes involving genetic and non-genetic factors leading to neurodegeneration. Molecules bearing iron or influencing iron metabolism reflect directly into the levels of that redox active metal, present as Fe(II)/Fe(III), in the brain. In turn, iron level variations are associated with chemical reactivity disrupting iron homeostasis, generating variable neurotoxic iron forms and contributing to the vulnerability of cells toward oxidative stress and neuronal death in Alzheimer's disease (AD). Efforts to delineate the interactions of neurotoxic Fe(III) with low molecular mass substrates, relevant to cellular processes, led to the discovery of specific well-defined binary iron-quinate (FeQ) species. Poised to investigate the specific effects of a) well-defined forms of labile soluble Fe(III), b) the nature and chemistry of the ligand bound to Fe(III), and c) a natural metal ion binder - quinic acid - acting as a potential neuroprotectant toward iron toxicity, FeCl(3), FeQ, and free quinate were employed in in vitro studies involving primary rat hippocampal cultures. Three hour and 24-hour exposures of such cultures to Fe(III) reveal significant differential effects on both glial and neuronal cell survival linked to neurotoxicity of the specific yet variably composed complex forms of iron. The use of quinic acid both in the free and bound form to Fe(III) a) exemplifies essential structural and chemical attributes of naturally encountered metal ion binders promoting well-defined interactions with neurotoxic Fe(III), and b) signifies the potential linkage of labile Fe(III) chemical reactivity in neurodegeneration with natural substrate neuroprotection.
Collapse
|