1
|
Liu G, Cao S, Huang L, Lin X, Sun Z, Lin G, Zhang L, Lu L, Luo X, Liao X. Relative bioavailability of selenium yeast, selenomethionine, hydroxyl-selenomethionine and nano-selenium for broilers. Front Vet Sci 2025; 11:1542557. [PMID: 39897155 PMCID: PMC11782124 DOI: 10.3389/fvets.2024.1542557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Selenium (Se) is an essential trace element for humans and animals. Development and application of new forms of Se sources with lower toxicity and higher bioavailability has been attracting more attention. However, the bioavailabilities of Se from several new Se sources for broilers remain unclear. Therefore, the aim of this study was to assess the relative bioavailabilities of Se from Se yeast (SY), selenomethionine (SM), hydroxyl-selenomethionine (SO) and nano-Se (NS) relative to sodium selenite (SS) for broilers fed a conventional corn-soybean meal diet. A total of 576 one-day-old Arbor Acres commercial male broilers were randomly assigned to 16 treatments with 6 replicate cages per treatment in a completely randomized design involving a 5 (Se sources: SY, SM, SO, NS and SS) × 3 (added Se levels: 0.15, 0.30 and 0.45 mg Se/kg) factorial design of treatments plus 1 (a Se-unsupplemented control) for 21 d. The relative bioavailabilities of Se sources were estimated based on plasma or tissue Se concentrations as well as selenoprotein mRNA expressions and activities in broilers. The results showed that the Se concentrations and glutathione peroxidase (GPX) activities in plasma, liver, breast muscle, pancreas and kidney as well as Se concentration in erythrocytes of broilers, and Gpx1 and Selenop mRNA expressions in pancreas increased linearly (p < 0.03) as added Se level increased. Furthermore, the differences (p < 0.05) among different Se sources were detected for the Se concentrations in liver, breast muscle, pancreas and erythrocytes, GPX activities in pancreas and kidney. Based on slope ratios from the multiple linear regressions of the above indices, the Se bioavailabilities of SY, SM, SO, NS relative to SS (100%) were 78 to 367%, 67.8 to 471%, 57 to 372%, and 45 to 92%, respectively. The results from this study indicated that the Se from SM, SY and SO are more available to broilers than the Se from SS in enhancing the Se concentrations in liver, breast muscle, pancreas and erythrocytes and GPX activity in pancreas, and the Se from SM had the highest while the Se from NS had the lowest relative bioavailability.
Collapse
Affiliation(s)
- Guoqing Liu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Sumei Cao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Huang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuanxu Lin
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zheng Sun
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gang Lin
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Mehri M, Ghazaghi M, Rokouei M. A Critical Perspective on Statistical Issues in Estimating Nutrient Bioavailability in Animal Bioassays. J Nutr 2024; 154:3544-3553. [PMID: 39426462 DOI: 10.1016/j.tjnut.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Assessing nutrients' relative bioavailability value (RBV) in poultry nutrition has been a prominent subject in the scientific literature for several decades. This method of nutritional evaluation is commonly used to appraise emerging sources of trace minerals and amino acid chelates. References outlining the method for estimating RBV have been available since the 1970s. However, a simplified approach to RBV estimation using the slope-ratio method without preceding statistical considerations to ensure validity and meet fundamental requirements may yield misleading conclusions. Using the slope-ratio method, which involves dividing the regression slope of the test ingredient by that of the reference, can cause uncertainties regarding statistical significance if the model's probability is reported without confidence intervals (CIs) for the RBV estimates. Despite longstanding criticism regarding the misinterpretation and improper use of statistical tests and CIs, these issues persist in estimating RBV using the slope-ratio method. An additional concern is that the misuse of the slope-ratio method and the application of inappropriate statistical analyses can lead to the underestimation of the RBV of nutrients in poultry species. This means that improper application of these methods can cause inaccurately low RBV values, affecting the assessment of nutrient effectiveness. This review addresses the potential pitfalls in peer-reviewed articles within this field, with a particular focus on zinc bioavailability through a reevaluation of RBV data in broilers, laying hens, and honeybees.
Collapse
Affiliation(s)
- Mehran Mehri
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Sistan, Iran.
| | - Mahmoud Ghazaghi
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Sistan, Iran
| | - Mohammad Rokouei
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Sistan, Iran
| |
Collapse
|
3
|
Wang S, Wu B, Zhu L, Zhang W, Zhang L, Wu W, Wu J, Hu Y, Li T, Cui X, Luo X. The chemical characteristics of different sodium iron ethylenediaminetetraacetate sources and their relative bioavailabilities for broilers fed with a conventional corn-soybean meal diet. J Anim Sci Biotechnol 2024; 15:16. [PMID: 38287436 PMCID: PMC10826250 DOI: 10.1186/s40104-023-00969-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Our previous studies demonstrated that divalent organic iron (Fe) proteinate sources with higher complexation or chelation strengths as expressed by the greater quotient of formation (Qf) values displayed higher Fe bioavailabilities for broilers. Sodium iron ethylenediaminetetraacetate (NaFeEDTA) is a trivalent organic Fe source with the strongest chelating ligand EDTA. However, the bioavailability of Fe when administered as NaFeEDTA in broilers and other agricultural animals remains untested. Herein, the chemical characteristics of 12 NaFeEDTA products were determined. Of these, one feed grade NaFeEDTA (Qf = 2.07 × 108), one food grade NaFeEDTA (Qf = 3.31 × 108), and one Fe proteinate with an extremely strong chelation strength (Fe-Prot ES, Qf value = 8,590) were selected. Their bioavailabilities relative to Fe sulfate (FeSO4·7H2O) for broilers fed with a conventional corn-soybean meal diet were evaluated during d 1 to 21 by investigating the effects of the above Fe sources and added Fe levels on the growth performance, hematological indices, Fe contents, activities and gene expressions of Fe-containing enzymes in various tissues of broilers. RESULTS NaFeEDTA sources varied greatly in their chemical characteristics. Plasma Fe concentration (PI), transferrin saturation (TS), liver Fe content, succinate dehydrogenase (SDH) activities in liver, heart, and kidney, catalase (CAT) activity in liver, and SDH mRNA expressions in liver and kidney increased linearly (P < 0.05) with increasing levels of Fe supplementation. However, differences among Fe sources were detected (P < 0.05) only for PI, liver Fe content, CAT activity in liver, SDH activities in heart and kidney, and SDH mRNA expressions in liver and kidney. Based on slope ratios from multiple linear regressions of the above indices on daily dietary analyzed Fe intake, the average bioavailabilities of Fe-Prot ES, feed grade NaFeEDTA, and food grade NaFeEDTA relative to the inorganic FeSO4·7H2O (100%) for broilers were 139%, 155%, and 166%, respectively. CONCLUSIONS The bioavailabilities of organic Fe sources relative to FeSO4·7H2O were closely related to their Qf values, and NaFeEDTA sources with higher Qf values showed higher Fe bioavailabilities for broilers fed with a conventional corn-soybean meal diet.
Collapse
Affiliation(s)
- Shengchen Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Bingxin Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Ling Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Weiyun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - We Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Jiaqi Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Yun Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Tingting Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Xiaoyan Cui
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Xugang Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China.
| |
Collapse
|
4
|
Effects of In Ovo Injection of Inorganic Salts of Zinc and Copper on Performance and Serum Biochemical Indices of Two Strains of Broiler Chickens. FOLIA VETERINARIA 2023. [DOI: 10.2478/fv-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
Abstract
This study was composed of two experiments which investigated the response of two strains (Arbor Acre and Cobb 500, respectively) of broiler chickens to in ovo injection of inorganic salts of zinc, copper and their combination. A total of 300 hatching eggs [only 148 (59.20 %) and 232 (90.27 %), respectively, were fertile] each of Arbor Acre and Cobb 500 strains of broiler chickens were used in both experiments. These eggs were distributed into four treatments: control, in ovo inorganic Zn (80 µg.egg−1), Cu (16 µg.egg−1) and combined Zn and Cu (80 µg.egg−1 Zn and 16 µg.egg−1 Cu). The data obtained in both experiments were subjected to Completely Randomized Design (CRD) at the 5 % probability level. The results showed increased hatchability (P < 0.05) in eggs injected with the combination of inorganic salts of Zn and Cu in Experiment I and daily intake was influenced in both experiments. The carcass traits, organ development and gut morphometry were not significantly influenced by the treatment groups. The total serum protein and albumin of the birds were significantly (P < 0.05) increased by in ovo injection of inorganic salts of Zn and Cu at day 49 in the Experiment I. The study concluded that in ovo injection of inorganic salts of Zn at 80 µg.egg−1 and/or Cu at 16 µg. egg−1 could be adopted to increase feed intake with: attendant enhanced growth, enhanced immune response, increased albumin and total protein contents of blood serum in the strains of broiler chickens used.
Collapse
|
5
|
Chen X, He C, Zhang K, Wang J, Ding X, Zeng Q, Peng H, Bai J, Lv L, Xuan Y, Bai S. Comparison of zinc bioavailability in zinc-glycine and zinc-methionine chelates for broilers fed with a corn-soybean meal diet. Front Physiol 2022; 13:983954. [PMID: 36467690 PMCID: PMC9714021 DOI: 10.3389/fphys.2022.983954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2023] Open
Abstract
The objective of this study was to compare the bioavailability of zinc (Zn) from zinc-glycine (Zn-Gly) and zinc-methionine (Zn-Met) as compared with zinc sulfate (ZnSO4) used as a standard in broilers. A total of 1,200 one-day-old male broilers (Cobb 500) were randomly allotted to one of 10 treatments with eight replicate cages of 15 birds each. The broilers were fed a corn-soybean meal basal diet (containing 26.46 mg Zn/kg; control) or the basal diet added with 40, 80, and 120 mg Zn/kg as Zn-Gly, Zn-Met, or ZnSO4 for 14 days. The relative bioavailability value (RBV) was calculated based on multiple linear regression slope ratios of Zn concentrations in tibia and pancreas, pancreas metallothionein (MT) concentration, and pancreas MT mRNA abundance on added Zn intake. When comparing the control with all Zn-supplemented treatments, Zn addition did not significantly affect average feed intake and bodyweight gain during days 1-14 (p > 0.10). However, Zn concentrations in the tibia, pancreas, and liver and pancreas MT concentration and MT mRNA abundance increased in all Zn-supplemented treatments compared with the control (p < 0.05), and these indices increased linearly (p < 0.001) with increasing added Zn levels on days 7 and 14. The RBV of Zn as Zn-Met was similar to that as Zn-Gly or ZnSO4 (p > 0.40) on days 7 and 14, based on tibia and pancreas Zn. In contrast, on days 7 and 14, the RBVs of Zn were in the following order: Zn-Met > Zn-Gly > ZnSO4 (p < 0.05), based on pancreas MT concentration. The bioavailable Zn from Zn-Met was 1.20 or 1.25 times that from Zn-Gly on day 7 or 14, respectively, evaluated by pancreas MT content. The RBV of Zn as Zn-Met was similar to that as Zn-Gly or ZnSO4 on day 7, whereas it was higher than that as Zn-Gly or ZnSO4 on day 14, based on pancreas MT mRNA abundance. In conclusion, Zn-Met had higher bioavailable Zn than Zn-Gly for the starter broilers fed with the corn-soybean meal diet, using pancreas MT concentration as the response criterion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shiping Bai
- Animal Nutrition Institute, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Yu L, Yi J, Chen Y, Huang M, Zhu N. Relative Bioavailability of Broiler Chickens Fed with Zinc Hydroxychloride and Sulfate Sources for Corn-Soybean Meal. Biol Trace Elem Res 2022; 200:4114-4125. [PMID: 34825318 DOI: 10.1007/s12011-021-03013-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/02/2021] [Indexed: 12/01/2022]
Abstract
This study was conducted to determine relative bioavailability (RBV) of basic zinc chloride (BZC) compared to zinc sulfate monohydrate (ZSM) for broilers. A randomized design involving a 2 × 3 factorial arrangement of the different treatment regimens plus one negative control was set up for this study. A total of 630 newly hatched male AA broiler chicks were randomly allocated to 42 different pens (15 chickens/pen) and assigned to 7 dietary treatments in a completely randomized design. The diet was supplemented with 0, 20, 40, or 80 mg of Zn mg/kg of feed in the form of ZSM or BZC. The results showed that zinc supplementation altered average daily gain (ADG) and feed conversion ratio (FCR) (P < 0.05) for both zinc sources. It was observed that the weight gain increased linearly (P < 0.01) and FCR decreased linearly as dietary BZC and ZSM concentration increased. Moreover, compared with chickens fed with ZSM, chickens fed with BZC had higher ADG and lower FCR from days 0 to 14 (P < 0.05), and higher activity of plasma alkaline phosphatase (ALP) (P < 0.05), total superoxide dismutase (T-SOD), and CuZn superoxide dismutase (CuZn-SOD) (P < 0.01) in the plasma of chickens fed with BZC at zinc level 80 mg/kg at day 14. The pancreas divalent metal-ion transporter-1 (DMT1) mRNA expression of chickens fed with BZC was found to be significantly enhanced at day 28, and the pancreas metallothionein (MT) mRNA expression for BZC fed group was also markedly increased at Zn levels of 20 and 40 mg/kg respectively. The relative bioavailability (RBV) of BZC (Zn sulfate 100%) based on ADG in the starter phase was 110.82%, whereas the tibia zinc content, as well as the activities of plasma ALP and CuZn-SOD, and the pancreas MT mRNA level were in the range between 108 and 119%. It was thus concluded that BZC was more efficacious than Zn sulfate and could serve as a potentially novel zinc source in the broilers.
Collapse
Affiliation(s)
- Longfei Yu
- Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Jiang Yi
- Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Yan Chen
- Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Mingxing Huang
- Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Nianhua Zhu
- Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, People's Republic of China.
| |
Collapse
|
7
|
Abd El-Ghany WA. A perspective review on the effect of different forms of zinc on poultry production of poultry with special reference to the hazardous effects of misuse. CABI REVIEWS 2022; 2022. [DOI: 10.1079/cabireviews202217013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractZinc (Zn) is a unique micro-mineral because it is an essential component in many enzymes such as superoxide dismutase, carbonic anhydrase, and alkaline phosphatase, as well as being important for regulation of proteins and lipids metabolism, and sex hormones. This mineral is applied in poultry production in three forms; inorganic, organic, and nanoparticle form. The nano-form of Zn is preferable in application to other conventional forms with regard to absorption, bioavailability, and efficacy. Broilers fed on diets supplemented with Zn showed improvement of growth performance, carcass meat yield, and meat quality. In addition, Zn plays an important role in enhancing of both cellular and humeral immune responses, beside its antimicrobial and antioxidant activities. In laying hens, dietary addition of Zn improves the eggshell quality and the quantity of eggs. Moreover, Zn has a vital role in breeders in terms of improving the egg production, fertility, hatchability, embryonic development, and availability of the hatched chicks. Therefore, this review article is focused on the effects of using Zn on the performance and immunity of poultry, as well as its antimicrobial and antioxidant properties with special reference to the hazardous effects of the misusing of this mineral.
Collapse
Affiliation(s)
- Wafaa A. Abd El-Ghany
- Address: Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| |
Collapse
|
8
|
Chang Y, Tang H, Zhang Z, Yang T, Wu B, Zhao H, Liu G, Chen X, Tian G, Cai J, Wu F, Jia G. Zinc Methionine Improves the Growth Performance of Meat Ducks by Enhancing the Antioxidant Capacity and Intestinal Barrier Function. Front Vet Sci 2022; 9:774160. [PMID: 35174244 PMCID: PMC8841862 DOI: 10.3389/fvets.2022.774160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
This study was conducted to investigate the effects of zinc methionine (Zn-Met) on the growth performance, antioxidant capacity and intestinal barrier function of meat ducks. Three hundred and sixty 1-day-old male Cherry Valley ducks were randomly divided into 6 groups with 6 replicates (10 birds each), and fed diets with 0, 30, 60, 90, 120 or 150 mg/kg Zn for 35 d. The results indicated that dietary supplementation with Zn-Met substantially increased the average daily gain (ADG), and reduced the feed to gain ratio (F/G) during 1–35 d (P < 0.05). Dietary Zn-Met markedly increased the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH), and reduced the malondialdehyde (MDA) content in the jejunum (P < 0.05). The mRNA expression levels of critical antioxidant enzymes such as SOD, CAT, and nuclear factor erythroid 2-related factor 2 (Nrf2) were increased by Zn in the jejunum (P < 0.05). Supplementation with 60, 90, 120, and 150 mg/kg of Zn significantly reduced the diamine oxidase (DAO) activity in the serum (P < 0.05). Different levels of Zn can increase the mRNA expression of occluding (OCLN) and zonula occludens-1 (ZO-1) in the jejunum (P < 0.05). Diets supplemented with zinc significantly increased the content of mucin2 (MUC2), secretory immunoglobulin A (sIgA), immunoglobulin A (IgA) and immunoglobulin G (IgG) in the jejunum of meat ducks (P < 0.05). The 16S rRNA sequence analysis indicated that 150 mg/kg of Zn had a higher relative abundance of Verrucomicrobia and Akkermansia in cecal digesta (P < 0.05). In conclusion, Zn-Met improved the growth performance of meat ducks by enhancing intestinal antioxidant capacity and intestinal barrier function. This study provides data support for the application of Zn-Met in meat duck breeding.
Collapse
Affiliation(s)
- Yaqi Chang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Huangyao Tang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhenyu Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- Institute of Animal Husbandry and Veterinary Medicine, Meishan Vocational Technical College, Meishan, China
| | - Ting Yang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Bing Wu
- Chelota Group, Guanghan, China
| | - Hua Zhao
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Guangmang Liu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jingyi Cai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Fali Wu
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Gang Jia
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Gang Jia ;
| |
Collapse
|
9
|
Li T, He W, Liao X, Lin X, Zhang L, Lu L, Guo Y, Liu Z, Luo X. Zinc alleviates the heat stress of primary cultured hepatocytes of broiler embryos via enhancing the antioxidant ability and attenuating the heat shock responses. ACTA ACUST UNITED AC 2021; 7:621-630. [PMID: 34401540 PMCID: PMC8334375 DOI: 10.1016/j.aninu.2021.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/23/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
Zinc (Zn) has been shown to attenuate the adverse effects of heat stress on broilers, but the mechanisms involving this process remain unclear. We aimed to investigate possible protective mechanisms of Zn on primary cultured hepatocytes of broiler embryos subjected to heat stress. Three experiments were conducted. In Exp. 1, hepatocytes were treated with 0, 50, 100, 200, or 400 μmol/L added Zn as inorganic Zn sulfate (iZn) for 12, 24 or 48 h. In Exp. 2, cells were exposed to 40 °C (a normal temperature [NT]) and 44 °C (a high temperature [HT]) for 1, 2, 4, 6, or 8 h. In Exp. 3, cells were preincubated with 0 or 50 μmol/L Zn as iZn or organic Zn lysine chelate (oZn) for 8 h under NT, and then incubated with the same Zn treatments under NT or HT for 4 or 6 h. The biomarkers of antioxidative status and heat stress in cells were measured. The results in Exp. 1 indicated that 50 μmol/L Zn and 12 h incubation were the optimal conditions for increasing antioxidant ability of hepatocytes. In Exp. 2, the 4 or 6 h incubation under HT was effective in inducing heat shock responses of hepatocytes. In Exp. 3, HT elevated (P < 0.01) malondialdehyde content and expressions of heat shock protein 70 (HSP70) mRNA and protein, as well as HSP90 mRNA. However, Zn supplementation increased (P < 0.05) copper zinc superoxide dismutase (CuZnSOD) activity and metallothionein mRNA expression, and effectively decreased (P < 0.05) the expressions of HSP70 mRNA and protein, as well as HSP90 mRNA. Furthermore, oZn was more effective (P < 0.05) than iZn in enhancing CuZnSOD activity of hepatocytes under HT. It was concluded that Zn (especially oZn) could alleviate heat stress of broiler hepatocytes via enhancing their antioxidant ability and attenuating heat shock responses.
Collapse
Affiliation(s)
- Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wengang He
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Lu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanli Guo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Liu FF, Azad MAK, Li ZH, Li J, Mo KB, Ni HJ. Zinc Supplementation Forms Influenced Zinc Absorption and Accumulation in Piglets. Animals (Basel) 2020; 11:ani11010036. [PMID: 33375418 PMCID: PMC7824504 DOI: 10.3390/ani11010036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/26/2022] Open
Abstract
The study aimed at determining the effect of different zinc (Zn) supplementation forms on Zn accumulation, activities of Zn-containing enzymes, gene expression of metallothionein (MT), and Zn transporters in piglets. Eighteen piglets were randomly divided into three groups: (a) a basal diet supplemented with 150 mg/kg Zn from Zn methionine (Zn-Met) in the feed (Zn-Met group), (b) a basal diet supplemented with 150 mg/kg Zn from Zn sulfate (ZnSO4) in the feed (ZnSO4, feed group), and (c) a basal diet supplemented with the same dose of Zn as in ZnSO4,feed group but in water (ZnSO4, water group). The results showed that Zn-Met added in feed and ZnSO4 dissolved in drinking water significantly improved (p < 0.05) the Zn concentration in liver and jejunum and the apparent digestibility of Zn in comparison with the ZnSO4 added in feed. In addition, dietary Zn supplementation as Zn-Met significantly increased (p < 0.05) the activity of alkaline phosphatase (AKP) in the jejunum of piglets in comparison with the ZnSO4, feed group. Furthermore, the Zn-Met and ZnSO4, water groups showed an improved total superoxide dismutase activity (T-SOD) in the ileum as compared to the ZnSO4, feed group. Meanwhile, the qPCR and western blot results showed that Zn-Met and ZnSO4 dissolved in drinking water increased the expression of MT in the jejunum in comparison with the ZnSO4 added in the piglets' feed. However, different Zn supplementation forms had no effect on the mRNA expressions of Zip4 and ZnT1 transporters. In conclusion, Zn-Met added in feed and ZnSO4 dissolved in drinking water had higher bioavailability in piglets.
Collapse
Affiliation(s)
- Fen-Fen Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (F.-F.L.); (M.A.K.A.); (Z.-H.L.); (J.L.); (K.-B.M.)
| | - Md. Abul Kalam Azad
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (F.-F.L.); (M.A.K.A.); (Z.-H.L.); (J.L.); (K.-B.M.)
| | - Zhi-He Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (F.-F.L.); (M.A.K.A.); (Z.-H.L.); (J.L.); (K.-B.M.)
| | - Jing Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (F.-F.L.); (M.A.K.A.); (Z.-H.L.); (J.L.); (K.-B.M.)
- Department of Animal Science, Hunan Agriculture University, Changsha 410125, China
| | - Kai-Bin Mo
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (F.-F.L.); (M.A.K.A.); (Z.-H.L.); (J.L.); (K.-B.M.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Heng-Jia Ni
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Hunan Research Center of Livestock and Poultry Sciences, South Central Experimental Station of Animal Nutrition and Feed Science in the Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (F.-F.L.); (M.A.K.A.); (Z.-H.L.); (J.L.); (K.-B.M.)
- Correspondence:
| |
Collapse
|
11
|
Liu G, Zhao Y, Cao S, Luo X, Wang R, Zhang L, Lu L, Liao X. Relative bioavailability of selenium yeast for broilers fed a conventional corn-soybean meal diet. J Anim Physiol Anim Nutr (Berl) 2020; 104:1052-1066. [PMID: 31782562 DOI: 10.1111/jpn.13262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/24/2019] [Accepted: 11/02/2019] [Indexed: 12/01/2022]
Abstract
The present study was conducted to assess the relative bioavailability of selenium (Se) as Se yeast (SY) relative to sodium selenite (SS) for broilers fed a conventional corn-soybean meal diet. A total of 360 one-d-old Arbor Acres commercial broilers were randomly assigned to 5 treatments with 6 replicates per treatment in a completely randomized design involving a 2 (Se sources: SY and SS) × 2 (added Se levels: 0.20 and 0.40 mg Se/kg) factorial design of treatments plus 1 (a Se-unsupplemented control diet) for 42 days. The results showed that Se concentrations in plasma, liver, heart, breast muscle, pancreas and kidney of broilers on d 21 and 42, glutathione peroxidase (GSH-Px) activity in the pancreas on d 21 as well as in the breast muscle and pancreas on d 42, and GSH-Px mRNA levels in the liver, heart, breast muscle and pancreas on d 21 increased linearly (p < .03) as levels of added Se increased. Furthermore, a difference (p ≤ .05) between SY and SS was detected for Se concentrations in plasma, liver, heart, breast muscle, pancreas and kidney, GSH-Px activity in pancreas on both d 21 and 42, as well as pancreatic GSH-Px mRNA level on d 21. Based on slope ratios from the multiple linear regressions of the above indices, the Se bioavailabilities of SY relative to SS (100%) were 111%-394% (p ≤ .05) when calculated from the Se concentrations in plasma, liver, heart, breast muscle, pancreas, kidney and GSH-Px activities in pancreas on d 21 and 42, as well as GSH-Px mRNA level in pancreas on d 21. The results from this study indicated that the Se from SY was more available for enhancing the Se concentrations in plasma or tissues and the expression and activity of GSH-Px in pancreas of broilers than the Se from SS.
Collapse
Affiliation(s)
- Guoqing Liu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuzhen Zhao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sumei Cao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Runlian Wang
- Department of Animal Science, Guangdong Ocean University, Zhanjiang, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Lu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Effects of environmental temperature and dietary zinc on egg production performance, egg quality and antioxidant status and expression of heat-shock proteins in tissues of broiler breeders. Br J Nutr 2019; 120:3-12. [PMID: 29936928 DOI: 10.1017/s0007114518001368] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To investigate the effects of environmental temperature and dietary Zn on egg production performance, egg quality and antioxidant status, as well as expression of heat-shock proteins (HSP) in tissues, of laying broiler breeders, we used a completely randomised design with a 2×3 factorial arrangement of treatments. The two environmental temperatures were normal (21±1°C, NT) and high (32±1°C, HT). The three dietary Zn sources were a Zn-unsupplemented basal diet (CON), and the basal diet supplemented with 110 mg Zn/kg as either the inorganic Zn sulphate (iZn) or the organic Zn proteinate with a moderate chelation strength (oZn). HT decreased (P<0·002) egg weight, laying rate, eggshell strength, thickness and weight, but increased (P≤0·05) rectal temperature, broken egg rate, misshapen egg rate, feed:egg ratio, Cu Zn superoxide dismutase activities in liver and pancreas, as well as metallothionein (MT) level in pancreas, and HSP70 mRNA levels in liver and pancreas of laying broiler breeders. Broiler breeders fed the oZn diet had higher (P<0·04) Zn content in the liver, as well as MT levels in the liver and pancreas, compared with those fed the CON diet. Under HT, broiler breeders fed the oZn diet had higher (P<0·05) Zn content in the pancreas compared with those fed the iZn and CON diets. The results from this study indicated that HT impaired egg production performance and eggshell quality possibly because of the disturbed redox balance and HSP homoeostasis, whereas the oZn is more available than the iZn for pancreatic Zn of heat-stressed laying broiler breeders.
Collapse
|
13
|
Akhavan-Salamat H, Ghasemi H. Effect of different sources and contents of zinc on growth performance, carcass characteristics, humoral immunity and antioxidant status of broiler chickens exposed to high environmental temperatures. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Min YN, Liu FX, Qi X, Ji S, Cui L, Wang ZP, Gao YP. Effects of organic zinc on tibia quality, mineral deposit, and metallothionein expression level of aged hens. Poult Sci 2019; 98:366-372. [PMID: 30184139 PMCID: PMC6347128 DOI: 10.3382/ps/pey386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 08/27/2018] [Indexed: 11/23/2022] Open
Abstract
The study aimed to determine the effects of methionine hydroxy analog chelate zinc on the tibia quality, mineral deposit, apparent retention of nutrients, and liver metallothionein (MT) expression level of aged laying hens. A total of 960 layers (Hy-Line Grey, 57 wk old) were randomly assigned into 4 groups, and each group had 8 replicates of 30 hens. During the first 2 wk, groups were fed a basal diet without extra zinc (Zn: 35.08 mg/kg). During the ensuing 14 wk, 4 levels of Zn (inorganic Zn: 80 mg/kg; organic Zn: 20, 40, 80 mg/kg) were added to the diet. The results indicated that both the Zn source and level did influence tibia strength and calcium (Ca) and Zn concentrations of tibia (P < 0.05), whereas there were no differences in the copper (Cu) and phosphorus (P) concentrations of the tibia and the tibia length (P > 0.05). Moreover, dietary supplementation with 40 or 80 mg/kg of organic Zn showed higher Zn and Ca concentrations in the tibia and higher tibia strength. The Cu concentration in the liver showed no difference among the 4 treatments, whereas the Zn concentration in the liver increased with the increasing Zn level. The apparent retention of P, iron (Fe), and manganese (Mn) was not affected by the Zn level or source (P > 0.05). However, the organic Zn group increased the apparent retention of Cu, Zn, Ca, crude protein (CP), and energy, and the group supplemented with 40 or 80 mg/kg of organic Zn obtained significant effects (P < 0.05). Moreover, dietary supplementation with 40 or 80 mg/kg organic Zn increased the MT mRNA expression of the liver at week 72, whereas 20 mg/kg of organic Zn decreased it (P < 0.05). In conclusion, this study suggested that an optimum dietary (40 mg/kg) organic Zn level plays a key role in promoting the apparent retention of minerals and nutrients, trace element deposit, and MT mRNA expression.
Collapse
Affiliation(s)
- Y N Min
- College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100, China
| | - F X Liu
- College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100, China
| | - X Qi
- College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100, China
| | - S Ji
- College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100, China
| | - L Cui
- College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100, China
| | - Z P Wang
- College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100, China
| | - Y P Gao
- College of Animal Science and Technology, Northwest A& F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
15
|
Zhang S, Liao X, Ma X, Zhang L, Lu L, Luo X. Relative bioavailability of ultrafine sodium selenite for broilers fed a conventional corn-soybean meal diet. J Anim Sci 2018; 96:4755-4767. [PMID: 30215747 PMCID: PMC6247847 DOI: 10.1093/jas/sky333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/10/2018] [Indexed: 11/14/2022] Open
Abstract
The particle size of selenium (Se) sources could affect Se absorption and utilization, and thus it is hypothesized that the Se bioavailability might be higher in ultrafine sodium selenite (USSe) than in sodium selenite (SSe) for broilers because of USSe's smaller particle size. An experiment was conducted to investigate the relative bioavailability of Se as USSe relative to SSe for broiler chicks fed a conventional corn-soybean meal diet. A total of 504 one-d-old Arbor Acres commercial male broilers were randomly allotted to 1 of 7 treatments with 6 replicates per treatment in a completely randomized design involving in a 2 (Se sources) × 3 (added Se levels) factorial arrangement of treatments plus a Se-unsupplemented control diet containing 0.05 mg Se/kg by analysis for 21 d. The 2 Se sources were USSe and SSe, and the 3 added Se levels were 0.15, 0.30, or 0.45 mg Se/kg. The Se concentrations, glutathione peroxidase (GSH-Px) activities, and mRNA relative abundances in plasma, liver, or pancreas of broilers on day 14 and 21 were determined. The results showed that Se concentrations, GSH-Px activities in plasma, liver, and pancreas, and mRNA relative abundances in the liver and pancreas of broilers on day 14 and 21 increased linearly (P < 0.05) as the added Se-level increased. Furthermore, a difference (P < 0.05) between USSe and SSe was detected for GSH-Px mRNA relative abundance in the pancreas of broilers on day 14. On the basis of the slope ratios from the multiple linear regression of the pancreatic GSH-Px mRNA relative abundance of broilers at 14 d of age on daily dietary analyzed Se intake, the Se bioavailability of USSe relative to SSe (100%) was 158% (P < 0.05). The results from this study indicated that the Se from USSe was more available to broilers than the Se from SSe in enhancing the pancreatic GSH-Px mRNA expression.
Collapse
Affiliation(s)
- Shumin Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiudong Liao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xuelian Ma
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Lin Lu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xugang Luo
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
16
|
Sun X, Lu L, Liao X, Zhang L, Lin X, Luo X, Ma Q. Effect of In Ovo Zinc Injection on the Embryonic Development and Epigenetics-Related Indices of Zinc-Deprived Broiler Breeder Eggs. Biol Trace Elem Res 2018; 185:456-464. [PMID: 29427034 DOI: 10.1007/s12011-018-1260-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 01/30/2018] [Indexed: 01/16/2023]
Abstract
The role of in ovo zinc (Zn) injection in improving the embryonic development in eggs from Zn-deficient hens, via epigenetic and antioxidant mechanisms, was examined. A completely randomized design involving a 1 (the non-injected control) + 1 (the injected control with sterilized water) + 2 (Zn source) × 2 (Zn level) factorial arrangement of treatments was used. The two injected Zn sources were inorganic Zn sulfate and organic Zn-lysine chelate with a moderate chelation strength, and the two injected Zn levels were 50 and 100 μg Zn/egg. In ovo Zn injection decreased (P < 0.05) embryonic mortality, and increased (P < 0.05) hatchability and healthy chick ratio. In ovo Zn injection increased (P < 0.05) embryonic tibia Zn content, but had no effect (P > 0.05) on copper (Cu)- and Zn-containing superoxide dismutase (CuZnSOD) activities and metallothionein IV (MT4) levels or their mRNA expression levels and malondialdehyde (MDA) levels in the embryonic liver. In ovo Zn injection had no effect (P > 0.05) on the global level of DNA methylation or DNA methylation and histone 3 lysine 9 (H3K9) acetylation levels of the MT4 promoter in the embryonic liver. However, the organic Zn had higher (P < 0.05) levels of DNA methylation and H3K9 acetylation than inorganic Zn. These data demonstrate that in ovo Zn injection improved the embryonic development, and the organic Zn was more effective than inorganic Zn in enhancing DNA methylation and H3K9 acetylation in the liver MT4 promoter, but the precise mechanisms require further investigations.
Collapse
Affiliation(s)
- Xiaoming Sun
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lin Lu
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xiudong Liao
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Liyang Zhang
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xi Lin
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xugang Luo
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Qiugang Ma
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
17
|
Zhang L, Wang YX, Xiao X, Wang JS, Wang Q, Li KX, Guo TY, Zhan XA. Effects of Zinc Glycinate on Productive and Reproductive Performance, Zinc Concentration and Antioxidant Status in Broiler Breeders. Biol Trace Elem Res 2017; 178:320-326. [PMID: 28130743 DOI: 10.1007/s12011-016-0928-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
Abstract
An experiment was conducted to investigate the effects of zinc glycinate (Zn-Gly) supplementation as an alternative for zinc sulphate (ZnSO4) on productive and reproductive performance, zinc (Zn) concentration and antioxidant status in broiler breeders. Six hundred 39-week-old Lingnan Yellow broiler breeders were randomly assigned to 6 groups consisting of 4 replicates with 25 birds each. Breeders were fed a basal diet (control group, 24 mg Zn/kg diet), basal diet supplemented with 80 mg Zn/kg diet from ZnSO4 or basal diet supplemented with 20, 40, 60 and 80 mg Zn/kg diet from Zn-Gly. The experiment lasted for 8 weeks after a 4-week pre-test with the basal diet, respectively. Results showed that Zn supplementation, regardless of sources, improved (P < 0.05) the feed conversion ratio (kilogram of feed/kilogram of egg) and decreased broken egg rate, and elevated (P < 0.05) the qualified chick rate. Compared with the ZnSO4 group, the 80 mg Zn/kg Zn-Gly group significantly increased (P < 0.05) average egg weight, fertility, hatchability and qualified chick rate, whereas it decreased (P < 0.05) broken egg rate. The Zn concentrations in liver and muscle were significantly higher (P < 0.05) in 80 mg Zn/kg Zn-Gly group than that in ZnSO4 group. Compared with ZnSO4 group, 80 mg Zn/kg Zn-Gly group significantly elevated (P < 0.05) the mRNA abundances of metallothionein (MT) and copper-zinc superoxide (Cu-Zn SOD), as well as the Cu-Zn SOD activity and MT concentration in liver. Moreover, the 80 mg Zn/kg Zn-Gly group had higher (P < 0.05) serum T-SOD and Cu-Zn SOD activities than that in the ZnSO4 group. This study indicated that supplementation of Zn in basal diet improved productive and reproductive performance, Zn concentration and antioxidant status in broiler breeders, and the 80 mg Zn/kg from Zn-Gly was the optimum choice for broiler breeders compared with other levels of Zn from Zn-Gly and 80 mg/kg Zn from ZnSO4.
Collapse
Affiliation(s)
- Ling Zhang
- Feed Science Institute, College of Animal Science, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Yong-Xia Wang
- College of Animal Science and Technology, Zhejiang A & F University, Linan, 311300, People's Republic of China
| | - Xue Xiao
- Feed Science Institute, College of Animal Science, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Jiang-Shui Wang
- Feed Science Institute, College of Animal Science, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Qian Wang
- Feed Science Institute, College of Animal Science, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Kai-Xuan Li
- Feed Science Institute, College of Animal Science, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Tian-Yu Guo
- Feed Science Institute, College of Animal Science, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Xiu-An Zhan
- Feed Science Institute, College of Animal Science, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
18
|
Zhu Y, Li W, Lu L, Zhang L, Ji C, Lin X, Liu H, Odle J, Luo X. Impact of maternal heat stress in conjunction with dietary zinc supplementation on hatchability, embryonic development, and growth performance in offspring broilers. Poult Sci 2017; 96:2351-2359. [DOI: 10.3382/ps/pew481] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/09/2016] [Indexed: 11/20/2022] Open
|
19
|
Zhang LY, Lu L, Zhang LY, Luo XG. The chemical characteristics of organic iron sources and their relative bioavailabilities for broilers fed a conventional corn-soybean meal diet. J Anim Sci 2016; 94:2378-96. [PMID: 27285914 DOI: 10.2527/jas.2016-0297] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Twenty-four organic Fe sources were evaluated by polarographic analysis and via solubility in buffers (pH 5 and 2) and deionized water. Organic Fe sources included 6 Fe-Met complexes (Fe-Met), 10 Fe-Gly complexes, 1 Fe-Lys complex, 4 Fe proteinates, and 3 Fe-AA complexes (Fe-AA). Sources varied considerably in chemical characteristics. Chelation strengths (quotient of formation [Q] values) ranged from weak (Q = 1.08) to extremely strong strength (Q = 8,590). A total of 1,170 1-d-old Arbor Acres male broilers were randomly allotted to 6 replicate cages (15 chicks/cage) for each of 13 treatments in a completely randomized design involving a 4 × 3 factorial arrangement of treatments (4 Fe sources × 3 added Fe levels) plus a control with no added Fe. Dietary treatments included a corn-soybean meal basal diet (control; 55.8 mg Fe/kg) and the basal diet supplemented with 20, 40, or 60 mg Fe/kg as iron sulfate (FeSO∙7HO); an Fe-Met with weak chelation strength (Fe-Met W; Q = 1.37; 14.7% Fe); an iron proteinate with moderate chelation strength (Fe-Prot M; Q = 43.6; 14.2% Fe); or an iron proteinate with extremely strong chelation strength (Fe-Prot ES; Q = 8,590; 10.2% Fe). The growth performance, Fe concentrations, hematological indices, and activities and gene expressions of 2 Fe-containing enzymes in tissues of broilers at 7, 14, and 21 d of age were determined in the present study. Transferrin saturation in plasma on 14 d; bone Fe on d 7 and 14; liver Fe on d 7, 14, and 21; kidney Fe on d 14; succinate dehydrogenase activities in the liver on d 21 and in the kidney on d 7 and 21; mRNA levels in the kidney and heart on d 14; and mRNA levels in the liver and kidney on d 21 linearly increased ( < 0.05) as added Fe levels increased. However, differences in bioavailabilities among Fe sources were detected ( < 0.05) only for the mRNA levels in the liver and kidney on d 21. Based on slope ratios from the multiple linear regression of mRNA level in the liver or kidney of broilers on d 21 on daily dietary analyzed Fe intake, the bioavailabilities of Fe-Met W, Fe-Prot M, and Fe-Prot ES relative to iron sulfate (100%) were 129 ( = 0.18), 164 ( < 0.003), and 174% ( < 0.001) or 102 ( = 0.95), 143 ( = 0.09), and 174% ( < 0.004), respectively. These results indicated that the relative bioavailabilities of organic Fe sources were closely related to their Q values and organic Fe sources with greater Q values showed higher Fe bioavailabilities.
Collapse
|