1
|
Jing H, Yang W, Chen Y, Yang L, Zhou H, Yang Y, Zhao Z, Wu P, Zia-Ur-Rehman M. Exploring the mechanism of Cd uptake and translocation in rice: Future perspectives of rice safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165369. [PMID: 37433335 DOI: 10.1016/j.scitotenv.2023.165369] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Cadmium (Cd) contamination in rice fields has been recognized as a severe global agro-environmental issue. To reach the goal of controlling Cd risk, we must pay more attention and obtain an in-depth understanding of the environmental behavior, uptake and translocation of Cd in soil-rice systems. However, to date, these aspects still lack sufficient exploration and summary. Here, we critically reviewed (i) the processes and transfer proteins of Cd uptake/transport in the soil-rice system, (ii) a series of soil and other environmental factors affecting the bioavailability of Cd in paddies, and (iii) the latest advances in regard to remediation strategies while producing rice. We propose that the correlation between the bioavailability of Cd and environmental factors must be further explored to develop low Cd accumulation and efficient remediation strategies in the future. Second, the mechanism of Cd uptake in rice mediated by elevated CO2 also needs to be given more attention. Meanwhile, more scientific planting methods (direct seeding and intercropping) and suitable rice with low Cd accumulation are important measures to ensure the safety of rice consumption. In addition, the relevant Cd efflux transporters in rice have yet to be revealed, which will promote molecular breeding techniques to address the current Cd-contaminated soil-rice system. The potential for efficient, durable, and low-cost soil remediation technologies and foliar amendments to limit Cd uptake by rice needs to be examined in the future. Conventional breeding procedures combined with molecular marker techniques for screening rice varieties with low Cd accumulation could be a more practical approach to select for desirable agronomic traits with low risk.
Collapse
Affiliation(s)
- Haonan Jing
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China.
| | - Yonglin Chen
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Liyu Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yang Yang
- College of Environment and Ecology, Hunan Agriculture University, Changsha 410128, China
| | - Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | | |
Collapse
|
2
|
Sun H, Chen J, Xiong D, Long M. Detoxification of Selenium Yeast on Mycotoxins and Heavy Metals: a Review. Biol Trace Elem Res 2023; 201:5441-5454. [PMID: 36662349 PMCID: PMC9854417 DOI: 10.1007/s12011-023-03576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Mycotoxins are secondary metabolites produced by specific fungi. More than 400 different mycotoxins are known in the world, and the concentration of these toxins in food and feed often exceeds the acceptable limit, thus causing serious harm to animals and human body. At the same time, modern industrial agriculture will also bring a lot of environmental pollution in the development process, including the increase of heavy metal content, and often the clinical symptoms of low/medium level chronic heavy metal poisoning are not obvious, thus delaying the best treatment opportunity. However, the traditional ways of detoxification cannot completely eliminate the adverse effects of these toxins on the body, and sometimes bring some side effects, so it is essential to find a new type of safe antidote. Trace element selenium is among the essential mineral nutrient elements of human and animal bodies, which can effectively remove excessive free radicals and reactive oxygen species in the body, and has the effects of antioxidant, resisting stress, and improving body immunity. Selenium is common in nature in inorganic selenium and organic selenium. In previous studies, it was found that the use of inorganic selenium (sodium selenite) can play a certain protective role against mycotoxins and heavy metal poisoning. However, while it plays the role of antioxidant, it will also have adverse effects on the body. Therefore, it was found in the latest study that selenium yeast could not only replace the protective effect of sodium selenite on mycotoxins and heavy metal poisoning, but also improve the immunity of the body. Selenium yeast is an organic selenium source with high activity and low toxicity, which is produced by selenium relying on the cell protein structure of growing yeast. It not only has high absorption rate, but also can be stored in the body after meeting the physiological needs of the body for selenium, so as to avoid selenium deficiency again in the short term. However, few of these studies can clearly reveal the protective mechanism of yeast selenium. In this paper, the detoxification mechanism of selenium yeast on mycotoxins and heavy metal poisoning was reviewed, which provided some theoretical support for further understanding of the biological function of selenium yeast and its replacement for inorganic selenium. The conclusions suggest that selenium yeast can effectively alleviate the oxidative damage by regulating different signaling pathways, improving the activity of antioxidant enzymes, reversing the content of inflammatory factors, regulating the protein expression of apoptosis-related genes, and reducing the accumulation of mycotoxins and heavy metals in the body.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Dongwei Xiong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| |
Collapse
|
3
|
Požgajová M, Navrátilová A, Kovár M. Curative Potential of Substances with Bioactive Properties to Alleviate Cd Toxicity: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12380. [PMID: 36231680 PMCID: PMC9566368 DOI: 10.3390/ijerph191912380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Rapid urbanization and industrialization have led to alarming cadmium (Cd) pollution. Cd is a toxic heavy metal without any known physiological function in the organism, leading to severe health threat to the population. Cd has a long half-life (10-30 years) and thus it represents serious concern as it to a great extent accumulates in organs or organelles where it often causes irreversible damage. Moreover, Cd contamination might further lead to certain carcinogenic and non-carcinogenic health risks. Therefore, its negative effect on population health has to be minimalized. As Cd is able to enter the body through the air, water, soil, and food chain one possible way to defend and eliminate Cd toxicities is via dietary supplements that aim to eliminate the adverse effects of Cd to the organism. Naturally occurring bioactive compounds in food or medicinal plants with beneficial, mostly antioxidant, anti-inflammatory, anti-aging, or anti-tumorigenesis impact on the organism, have been described to mitigate the negative effect of various contaminants and pollutants, including Cd. This study summarizes the curative effect of recently studied bioactive substances and mineral elements capable to alleviate the negative impact of Cd on various model systems, supposing that not only the Cd-derived health threat can be reduced, but also prevention and control of Cd toxicity and elimination of Cd contamination can be achieved in the future.
Collapse
Affiliation(s)
- Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Alica Navrátilová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Marek Kovár
- Institute of Plant and Environmental Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
4
|
Zhang H, Huang J, Yang J, Cai J, Liu Q, Zhang X, Bao J, Zhang Z. Cadmium induces apoptosis and autophagy in swine small intestine by downregulating the PI3K/Akt pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41207-41218. [PMID: 35091949 DOI: 10.1007/s11356-022-18863-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is an environmental contaminant, which is potentially toxic. It is well known that Cd can accumulate in the liver and kidney and cause serious damage. However, few studies have investigated the mechanism of intestinal damage induced by Cd in swine. Here, we established Cd poisoning models in vivo and in vitro to explore the mechanism of intestinal injury induced by Cd in swine. The morphology of intestinal tissue cells was observed by TUNEL staining and electron microscopy, and the morphology of IPEC-J2 cells was observed by flow cytometry, Hoechst staining, and MDC staining. Cell morphological observations revealed that Cd treatment induced ileal apoptosis and autophagy. The effects of Cd on the PI3K/Akt pathway, as well as on apoptosis and autophagy-related protein expression in intestinal cells, were analyzed by western blot (WB) and the expression of mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). The results showed that Cd induced autophagy by increasing the levels of autophagy markers Beclin1, Autophagy-associated gene 5 (ATG5), Autophagy-associated gene 16 (ATG16), and Microtubule-associated protein light chains 3-2 (LC3-II), and by reducing the expression levels of Mechanistic target of rapamycin kinase (mTOR) and Microtubule-associated protein light chains 3-1 (LC3-I). Cell apoptosis was induced by increasing the expression of apoptosis markers Bcl-2 associated X protein (Bax), Cysteinyl aspartate specific proteinase 9 (Caspase9), cleaved Caspase9, Cysteinyl aspartate specific proteinase 3 (Caspase3), and cleaved Caspase3, and by reducing the expression of B cell lymphoma/leukemia 2 (Bcl-2). At the same time, Cd decreased the expression of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and their phosphorylation. We treated IPEC-J2 cells with the PI3K activator 740Y-P and analyzed the morphological changes as well as autophagy and apoptosis-related gene expression. The results showed that 740Y-P could reduce apoptosis and autophagy induced by Cd. In conclusion, our findings suggest that Cd induces intestinal apoptosis and autophagy in swine by inactivating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jiaqiang Huang
- Department of Nutrition and Health, College of Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jun Bao
- College of Animal Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, People's Republic of China.
| |
Collapse
|
5
|
Wu C, Cui C, Zheng X, Wang J, Ma Z, Zhu P, Lin G, Zhang S, Guan W, Chen F. The Selenium Yeast vs Selenium Methionine on Cell Viability, Selenoprotein Profile and Redox Status via JNK/ P38 Pathway in Porcine Mammary Epithelial Cells. Front Vet Sci 2022; 9:850935. [PMID: 35433920 PMCID: PMC9011133 DOI: 10.3389/fvets.2022.850935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/14/2022] [Indexed: 01/04/2023] Open
Abstract
Comprehensive studies have been conducted to compare the effect of organic and inorganic selenium previously, but there is still limited knowledge about the difference between organic selenium (Se) from varied sources despite the widely use of organic Se in both animal and human being nutrient additives. In the present study, we systemically compared the effect of two different types of organic Se including selenium yeast (SeY) and selenium methionine (Sel-Met) on cell viability, selenoprotein transcriptome, and antioxidant status in porcine mammary epithelial cells (PMECs) and the results indicated that appropriate addition of SeY and Sel-Met both significantly promoted cell viability and up-regulated the mRNA expression of most selenopreoteins including DIOs, GPXs, and TrxRs family et al. (P < 0.05). Besides, two different sources of Se supplementation both greatly improved redox status with higher levels of T-AOC, SOD, and CAT (P < 0.05), while less content of MDA (P < 0.05), and reduced protein expression of cleaved-caspase-3 (P < 0.05) to mitigate cell apoptosis. Furthermore, the key proteins related to p38/JNK pathway including p38, p-p38, JNK, and p-JNK were apparently reduced in the groups with both of SeY and Sel-Met (P < 0.05). Interestingly we found that the changes induced by SeY supplementation in cell viability, selenoprotein transcriptome, antioxidative capacity, and anti-apoptosis were comprehensively greater compared with same levels addition of Sel-Met in PEMCs (P < 0.05). In conclusion, both SeY and Sel-Met promoted cell viability and attenuated cell apoptosis by regulating the selenoprotein expression and antioxidative capacity via p38/JNK signaling pathway in PMEC, but SeY has more efficient benefits than that of Sel-Met.
Collapse
Affiliation(s)
- Caichi Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Chang Cui
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ziwei Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Pengwei Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Gang Lin
- Key Laboratory of Agrifood Safety and Quality, Institute of Quality Standards and Testing Technology for Agricultural Products, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Wutai Guan
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- *Correspondence: Fang Chen
| |
Collapse
|
6
|
Tymchuk KM, Abramov SV, Kryzhanovsky DG, Fedchenko MP, Filipenko VV, Chernenko GP, Myakushko VA. EMBRYOTOXIC EFFECT OF CADMIUM CHLORIDE AND CUPRUM DURING THE ENTIRE PREGNANCY PERIOD IN WHITE RATS. BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-3-166-115-119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - S. V. Abramov
- Dnipro Medical Institute of Traditional and Non-Traditional Medicine
| | | | - M. P. Fedchenko
- Dnipro Medical Institute of Traditional and Non-Traditional Medicine
| | - V. V. Filipenko
- Dnipro Medical Institute of Traditional and Non-Traditional Medicine
| | - G. P. Chernenko
- Dnipro Medical Institute of Traditional and Non-Traditional Medicine
| | - V. A. Myakushko
- Dnipro Medical Institute of Traditional and Non-Traditional Medicine
| |
Collapse
|
7
|
Ye R, Huang J, Wang Z, Chen Y, Dong Y. Trace Element Selenium Effectively Alleviates Intestinal Diseases. Int J Mol Sci 2021; 22:ijms222111708. [PMID: 34769138 PMCID: PMC8584275 DOI: 10.3390/ijms222111708] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022] Open
Abstract
Selenium (Se) is an essential trace element in the body. It is mainly used in the body in the form of selenoproteins and has a variety of biological functions. Intestinal diseases caused by chronic inflammation are among the most important threats to human health, and there is no complete cure at present. Due to its excellent antioxidant function, Se has been proven to be effective in alleviating intestinal diseases such as inflammatory bowel diseases (IBDs). Therefore, this paper introduces the role of Se and selenoproteins in the intestinal tract and the mechanism of their involvement in the mediation of intestinal diseases. In addition, it introduces the advantages and disadvantages of nano-Se as a new Se preparation and traditional Se supplement in the prevention and treatment of intestinal diseases, so as to provide a reference for the further exploration of the interaction between selenium and intestinal health.
Collapse
Affiliation(s)
- Ruihua Ye
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (R.Y.); (Z.W.); (Y.C.)
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, China Agricultural University, Beijing 100193, China;
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (R.Y.); (Z.W.); (Y.C.)
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (R.Y.); (Z.W.); (Y.C.)
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (R.Y.); (Z.W.); (Y.C.)
- Correspondence:
| |
Collapse
|
8
|
The Antioxidant Properties of Selenium and Vitamin E; Their Role in Periparturient Dairy Cattle Health Regulation. Antioxidants (Basel) 2021; 10:antiox10101555. [PMID: 34679690 PMCID: PMC8532922 DOI: 10.3390/antiox10101555] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Dairy cattle experience health risks during the periparturient period. The continuous overproduction of reactive oxygen species (ROS) during the transition from late gestation to peak lactation leads to the development of oxidative stress. Oxidative stress is usually considered the main contributor to several diseases such as retained placenta, fatty liver, ketosis, mastitis and metritis in periparturient dairy cattle. The oxidative stress is generally balanced by the naturally available antioxidant system in the body of dairy cattle. However, in some special conditions, such as the peripariparturient period, the natural antioxidant system of a body is not able to balance the ROS production. To cope with this situation, the antioxidants are supplied to the dairy cattle from external sources. Natural antioxidants such as selenium and vitamin E have been found to restore normal health by minimizing the harmful effects of excessive ROS production. The deficiencies of Se and vitamin E have been reported to be associated with various diseases in periparturient dairy cattle. Thus in the current review, we highlight the new insights into the Se and vitamin E supplementation as antioxidant agents in the health regulation of periparturient dairy cattle.
Collapse
|
9
|
Chen H, Li P, Shen Z, Wang J, Diao L. Protective effects of selenium yeast against cadmium-induced necroptosis through miR-26a-5p/PTEN/PI3K/AKT signaling pathway in chicken kidney. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112387. [PMID: 34111659 DOI: 10.1016/j.ecoenv.2021.112387] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a ubiquitous environmental pollutant of increasing worldwide concern to both humans and animals. Selenium yeast (Se-Y) is an organic selenium source that has been shown an advantage in antagonizing Cd-induced liver necroptosis in chicken. Herein, we described the discovery path of Se-Y antagonism in Cd-induced renal necroptosis in chicken through targeting miR-26a-5p/PTEN/PI3K/AKT signaling pathway. We set up four groups of chickens at random: control group (0.5 mg/kg Na2SeO3), Se-Y group (0.5 mg/kg Se-Y), Se-Y+Cd group (0.5 mg/kg Se-Y and 150 mg/kg CdCl2) and Cd group (150 mg/kg CdCl2 and 0.5 mg/kg Na2SeO3). Interestingly, we found Se-Y, but not Na2SeO3, significantly blocked Cd accumulation in the kidney and alleviated Cd-induced necroptosis through inhibiting the expression of RIP1, RIP3 and MLKL. Se-Y, activated miR-26a-5p expression, thereby down-regulated the expression of PTEN, resulting in the up-regulation of PI3K/AKT signaling pathway and the inhibition of oxidative stress in both Se-Y and Cd treated chickens. Besides that, Se-Y could also specifically reduce the expression levels of heat shock protein 60 (HSP60), HSP70 and HSP90 in Se-Y and Cd co-treated chickens. Taken together, our results showed that Se-Y has an added value to antagonize Cd-induced necroptosis in chicken kidney by regulating the miR-26a-5p/PTEN/PI3K/AKT signaling pathway and HSPs, indicating that Se-Y could serve as an effective antagonist on Cd-induced renal necroptosis in chickens.
Collapse
Affiliation(s)
- Huijie Chen
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology College, Jilin 132101, PR China
| | - Peng Li
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology College, Jilin 132101, PR China
| | - Ziqiang Shen
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou 256600, PR China
| | - Jinliang Wang
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou 256600, PR China
| | - Lei Diao
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology College, Jilin 132101, PR China.
| |
Collapse
|
10
|
Cheng Y, Huang Y, Liu K, Pan S, Qin Z, Wu T, Xu X. Cardamine hupingshanensis aqueous extract improves intestinal redox status and gut microbiota in Se-deficient rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:989-996. [PMID: 32761836 DOI: 10.1002/jsfa.10707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND As an essential trace element for mammalian species, selenium (Se) possesses powerful antioxidant properties and is a potential regulator of intestinal microbiota. However, effects of Cardamine hupingshanensis aqueous extract (CE), rich in Se, on balancing the intestinal redox status and regulating gut microbiota have been neglected. RESULTS An Se-deficient rat model was established by feeding a low-Se diet (LD) for 5 weeks and CE was then supplemented to LD or normal-Se-diet (ND) rats. Antioxidant enzyme activities and short-chain fatty acids (SCFA) concentration were increased by CE in both LD and ND rats. CE improved the intestinal morphology of LD rats impaired by deficient Se. Intestinal microbiota demonstrated various changes; for example, Butyrivibrio was increased in LD rats, while Bacteroides, Christensenellaceae, Clostridiaceae and Blautia were enhanced in ND rats. CONCLUSION Our findings provide evidence that CE shows potential in improving intestinal redox status and regulating gut microbiota. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuxin Cheng
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Yuting Huang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Kunyuan Liu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Zhiguo Qin
- Enshi Institute of Natural Plant Selenium, Enshi, China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Guo Y, Mao K, Cao H, Ali W, Lei D, Teng D, Chang C, Yang X, Yang Q, Niazi NK, Feng X, Zhang H. Exogenous selenium (cadmium) inhibits the absorption and transportation of cadmium (selenium) in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115829. [PMID: 33160738 DOI: 10.1016/j.envpol.2020.115829] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/16/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Antagonism between selenium (Se) and cadmium (Cd) has been demonstrated in plants. However, a mutual suppression threshold for Se and Cd has not been identified in previous studies using Cd or Se individually. To fill this knowledge gap, we determined the levels of Se and Cd in various tissues of rice under concentration gradients of Se and Cd with different Se application times via hydroponic experiments. The results showed that the application of exogenous Se or Cd reduced the uptake and transport of the other. When the molar ratio of Se/Cd (R (Se/Cd)) was higher than 1, the concentration and transfer factor of Cd (TF-Cd) in all parts of rice simultaneously reached the lowest values. The minimum Se absorption in rice was obtained at R (Cd/Se) greater than 20, while no inhibition threshold was found for Se transport. In addition, approximately 1:1 R (Se/Cd) was observed in roots and the addition of exogenous Cd or Se promoted the enrichment of the other element in roots. These data suggested a mutual inhibition of Se and Cd in their absorption, transportation and accumulation in rice, which might be related to the formation of insoluble Cd-Se complexes in roots. This study provided new insights into a plausible explanation of the interactions between Se and Cd and contributed to the remediation and treatment of combined Se and Cd pollution in farmland systems.
Collapse
Affiliation(s)
- Yongkun Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Waqar Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Da Lei
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Dongye Teng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Chuanyu Chang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xuefeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Qi Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, Shanxi Province, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, Shanxi Province, China.
| |
Collapse
|
12
|
Selenised yeast sources differ in their capacity to protect porcine jejunal epithelial cells from cadmium-induced toxicity and oxidised DNA damage. Biometals 2018; 31:845-858. [PMID: 30008026 DOI: 10.1007/s10534-018-0129-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/08/2018] [Indexed: 12/20/2022]
Abstract
In recent years there has been increasing interest in the use of selenised yeast (Se-Y) as an antioxidant feed supplement. Here, three selenised yeast products are differentiated in terms of bioefficiency and the ameliorative effect on Cadmium (Cd) toxicity in porcine epithelial cells. A porcine digestion in vitro model was chosen to more accurately simulate the bioavailability of different Se-Y preparations, allowing a comprehensive understanding of the bio efficiency of each Se-Y compound in the porcine model. To elucidate a possible mechanism of action of selenium a number of bioassays were applied. Levels of Se dependent antioxidant enzymes (glutathione peroxidase and thioredoxin reductase) were evaluated to analyze the ROS neutralizing capacity of each Se-Y compound. The effects of Se-Y sources on Cd-induced DNA damage and apoptosis-associated DNA fragmentation was assessed using comet and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays, respectively. Lesion-specific DNA damage analysis and in vitro DNA repair assay determined the DNA repair capacity of each Se-Y source. The results presented in this study confirm that the ability of different commercially available Se-Y preparations to enhance a range of cellular mechanisms that protect porcine gut epithelial cells from Cd-induced damage is concentration-dependent and illustrates the difference in bioefficiency of different Se-Y compounds.
Collapse
|
13
|
Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Malevu TD, Sochor J, Baron M, Melcova M, Zidkova J, Kizek R. A Summary of New Findings on the Biological Effects of Selenium in Selected Animal Species-A Critical Review. Int J Mol Sci 2017; 18:E2209. [PMID: 29065468 PMCID: PMC5666889 DOI: 10.3390/ijms18102209] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022] Open
Abstract
Selenium is an essential trace element important for many physiological processes, especially for the functions of immune and reproductive systems, metabolism of thyroid hormones, as well as antioxidant defense. Selenium deficiency is usually manifested by an increased incidence of retention of placenta, metritis, mastitis, aborts, lowering fertility and increased susceptibility to infections. In calves, lambs and kids, the selenium deficiency demonstrates by WMD (white muscle disease), in foals and donkey foals, it is associated with incidence of WMD and yellow fat disease, and in pigs it causes VESD (vitamin E/selenium deficiency) syndrome. The prevention of these health disorders can be achieved by an adequate selenium supplementation to the diet. The review summarizes the survey of knowledge on selenium, its biological significance in the organism, the impact of its deficiency in mammalian livestock (comparison of ruminants vs. non-ruminants, herbivore vs. omnivore) and possibilities of its peroral administration. The databases employed were as follows: Web of Science, PubMed, MEDLINE and Google Scholar.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Sylvie Skalickova
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB107GJ, UK.
| | - Branislav Ruttkay-Nedecky
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| | | | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Mojmir Baron
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valtická 337, CZ-691 44 Lednice, Czech Republic.
| | - Magdalena Melcova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague, Czech Republic.
| | - Jarmila Zidkova
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague, Czech Republic.
| | - Rene Kizek
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
- Central Laboratory, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1946/1, 612 42 Brno, Czech Republic.
| |
Collapse
|