1
|
Ijaz MU, Mustafa S, Ain QU, Hamza A, Ali S. Rhamnazin ameliorates 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-evoked testicular toxicity by restoring biochemical, spermatogenic and histological profile in male albino rats. Hum Exp Toxicol 2023; 42:9603271231205859. [PMID: 37807851 DOI: 10.1177/09603271231205859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) is a potential environmental toxin that has the ability to affect male reproductive tract. Rhamnazin is a naturally present flavone that displays multiple medicinal properties. Therefore, the current study was designed to determine the mitigative role of rhamnazin against TCDD induced reproductive damage. 48 adult male albino rats were randomly separated into four groups: control, TCDD (10 µgkg-1), TCDD + rhamnazin (10 µgkg-1 + 5 mgkg-1 respectively) and rhamnazin (5 mgkg-1). The trial was conducted for 56 days. TCDD intoxication notably affected superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GSR) and catalase (CAT) activities, besides reactive oxygen species (ROS) and malondialdehyde (MDA) concentrations were augmented. TCDD administration also lowered sperm motility, viability, sperm number, while it augmented the sperm morphological (tail, neck/midpiece and head) anomalies. Moreover, it decreased the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and plasma testosterone. Moreover, TCDD reduced steroidogenic enzymes i.e., 17-beta hydroxysteroid dehydrogenase (17β-HSD), steroidogenic acute regulatory protein (StAR) and 3-beta hydroxysteroid dehydrogenase (3β-HSD) as well as B-cell lymphoma 2 (Bcl-2) expressions, but increased the expressions of Bcl-2-associated X protein (Bax) and cysteine-aspartic acid protease (Caspase-3). Furthermore, TCDD exposure also induced histopathological anomalies in testicular tissues. However, the supplementation of rhamnazin recovered all the mentioned damages in the testicles. The outcomes revealed that rhamnazin can ameliorate TCDD induced reproductive toxicity due to its anti-oxidant, anti-apoptotic and androgenic nature.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Shama Mustafa
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Qurat Ul Ain
- Department of Zoology, Government College Women University, Sialkot, Pakistan
| | - Ali Hamza
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| |
Collapse
|
2
|
Dobrzyński M, Nikodem A, Klećkowska-Nawrot J, Goździewska-Harłajczuk K, Janeczek M, Styczyńska M, Kuropka P. Assessment of Selected Morphological, Physical and Chemical Parameters of the Teeth of the Offspring of Female Rats Exposed to 2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD), Taking into Account the Protective Role of Selected Antioxidants-Preliminary Study. Animals (Basel) 2022; 12:484. [PMID: 35203192 PMCID: PMC8868449 DOI: 10.3390/ani12040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
The studies conducted so far indicate a negative effect of dioxins on the structure of the alveolar bone and teeth, especially in the developmental period in rats. The research aimed to analyze the indirect effect of dioxins contained in the body of female rats on the structure of the dental organ in their offspring in the neonatal period and to determine the possibility of reducing potential dioxin disorders of the structure of hard tissues in the offspring of intoxicated mothers by simultaneous administration of vitamin E or acetylsalicylic acid (ASA). Another goal of the research was to determine the level of magnesium, calcium and phosphorus contained in bone tissue as indicators of the mineralization process of hard tissues in rats, in the case of using 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and acetylsalicylic acid or α-tocopherol. The experiment was carried out on eight female rats of the Buffalo strain divided into four groups. From the offspring of eight females, the mandibles were removed from the mandibular joints, and then, after the removal of soft tissues, they were prepared for individual tests. Selected morphological, chemical and physical parameters of the teeth of the offspring of female rats from the experimental groups were analyzed. The analysis showed the effect of vitamin E and ASA on the content of Mg, Ca and P. In combination with TCDD, vitamin E and ASA, they positively inhibit the inflammatory process, preventing the leaching of Ca and Mg from the bones. ASA counteracted this phenomenon much more effectively than vitamin E. Detailed analysis of the tooth morphology showed that the molars' crowns exhibit shape disturbances under the influence of TCDD. Individual nodules in teeth T1, T2, T3 did not fuse, and the roots showed signs of hypertrophy. The study confirmed the negative effect of TCDD on tooth development. Teeth arising early in development are the most sensitive to the disorders, while the later ones are less exposed to the toxic effects of TCDD transmitted by the mother.
Collapse
Affiliation(s)
- Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Anna Nikodem
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland;
| | - Joanna Klećkowska-Nawrot
- Department of Biostructure and Animal Physiology, Division of Animal Anatomy, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Kożuchowska 1, 51-631 Wroclaw, Poland; (J.K.-N.); (M.J.)
| | - Karolina Goździewska-Harłajczuk
- Department of Biostructure and Animal Physiology, Division of Animal Anatomy, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Kożuchowska 1, 51-631 Wroclaw, Poland; (J.K.-N.); (M.J.)
| | - Maciej Janeczek
- Department of Biostructure and Animal Physiology, Division of Animal Anatomy, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Kożuchowska 1, 51-631 Wroclaw, Poland; (J.K.-N.); (M.J.)
| | - Marzena Styczyńska
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37/41, 51-630 Wroclaw, Poland;
| | - Piotr Kuropka
- Department of Biostructure and Animal Physiology, Division of Histology and Embryology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-635 Wroclaw, Poland;
| |
Collapse
|
3
|
Manjunath V, Badhe RV, McCoy M, Rynne J, Bhatti A, Segu A, Oral E, Jacobs JJ, Chastain P, Bijukumar D, Mathew MT. The role of Vitamin E in hip implant-related corrosion and toxicity: Initial outcome. J Mech Behav Biomed Mater 2021; 123:104769. [PMID: 34412025 PMCID: PMC10559727 DOI: 10.1016/j.jmbbm.2021.104769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/27/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
In orthopedic healthcare, Total Hip Replacement (THR) is a common and effective solution to hip-related bone and joint diseases/fracture; however, corrosion of the hip implant and the release of degradation metal ions/particles can lead to early implant failure and pose potential toxicity risk for the surrounding tissues. The main objective of this work was to investigate the potential role of Vitamin E to minimize corrosion-related concerns from CoCrMo hip implants. The study focused on two questions (i) Can Vitamin E inhibit CoCrMo corrosion? and (ii) Does Vitamin E moderate the toxicity associated with the CoCrMo implant particles? In the study (i) the electrochemical experiments (ASTM G61) with different concentrations of Vitamin E (1, 2, 3 mg/ml against the control) were performed using normal saline and simulated synovial fluid (Bovine calf serum-BCS, 30 g/L protein, pH 7.4) as electrolytes. The polished CoCrMo disc (Ra 50 nm) was the working electrode. The findings suggested that both Vitamin E-Saline (45 ± 0.9%) and Vitamin E-BCS (91 ± 3%) solutions protected against implant corrosion at a Vitamin E concentration of 3 mg/ml, but Vitamin E-BCS showed protection at all Vitamin E (1-3 mg/ml) concentration levels. These results suggested that the Vitamin E and the protein present in the BCS imparted additive effects towards the electrochemical inhibition. In the study (ii) the role of Vitamin E in cytotoxicity inhibition was studied using a mouse neuroblastoma cell line (N2a) for CoCrMo particles and Cr ions separately. The CoCrMo particles were generated from a custom-built hip simulator. The alamarBlue assay results suggested that Vitamin E provides significant protection (85% and 75% proliferation) to N2a cells against CoCrMo particles and Cr ions, respectively at 1 μg/ml concentration, as compared to the control group. However, the results obtained from ROS expression and DNA fiber staining suggest that Vitamin E is only effective against CoCrMo degradation particles and not against Cr ions. In summary, the findings show that Vitamin E can minimize the corrosion processes and play a role in minimizing the potential toxicity associated with implants.
Collapse
Affiliation(s)
- Vikas Manjunath
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Ravindra V Badhe
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Maureen McCoy
- Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA
| | - Josiah Rynne
- Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, IL, USA
| | - Aisha Bhatti
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Abhijith Segu
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Ebru Oral
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Joshua J Jacobs
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Paul Chastain
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Divya Bijukumar
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA
| | - Mathew T Mathew
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL, USA.
| |
Collapse
|
4
|
Całkosińska A, Dominiak M, Sobolewska S, Leśków A, Tarnowska M, Całkosiński A, Dobrzyński M. The Protective Effect of Xanthohumol on the Content of Selected Elements in the Bone Tissue for Exposed Japanese Quails to TCDD. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5883. [PMID: 32823692 PMCID: PMC7460139 DOI: 10.3390/ijerph17165883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 11/25/2022]
Abstract
Dioxins (including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are highly toxic and persistent chemicals widely distributed in the environment in trace amounts, and are side products of industrial and chemical processes. Exposure to dioxins leads to multiorgan morphological and functional abnormalities, including within the bone tissue, disrupting its microarchitecture and mechanical properties. Xanthohumol (XN) is a chemical compound classified as a prenylated flavonoid, distinguished by multidirectional biological action. The aim of the study is to assess whether xanthohumol, as a substance with strong antioxidant and anti-inflammatory properties, has the ability to eliminate the negative effects of TCDD on bone tissue. The experiment was conducted on adult Japanese quails. Two different doses of TCDD and xanthohumol were administered to birds. After euthanasia of animals, the research material in the form of cranial vault and hind limb bone was collected, and their mineral compositions of calcium, phosphorus, magnesium, zinc, and iron concentrations were determined using atomic emission spectrometry in an acetylene-air flame method. Our results indicate that the administration of TCDD at a low dose causes more dynamic changes in the concentration of elements in bone, in comparison to a higher dose of dioxin. Results show also that higher doses of the XN cause the linear increase in the concentration of phosphorus and iron in the bone of the hind limb, and calcium in the bones of the cranial vault. In conclusion, our experiment shows that the use of TCDD and XN in Japanese quails together in various doses influences the content of phosphorus, magnesium, zinc, and iron in the research material.
Collapse
Affiliation(s)
- Aleksandra Całkosińska
- Department of Oral Surgery, Wroclaw Medical University, Krakowska 26 Street, 50-425 Wroclaw, Poland;
| | - Marzena Dominiak
- Department of Oral Surgery, Wroclaw Medical University, Krakowska 26 Street, 50-425 Wroclaw, Poland;
| | - Sylwia Sobolewska
- Department of Animal Nutrition and Feed Management, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38c Street, 51-630 Wroclaw, Poland;
| | - Anna Leśków
- Department of Nervous System Diseases, Faculty of Health Science, Wroclaw Medical University, Bartla Street 5, 51-618 Wroclaw, Poland; (A.L.); (M.T.)
| | - Małgorzata Tarnowska
- Department of Nervous System Diseases, Faculty of Health Science, Wroclaw Medical University, Bartla Street 5, 51-618 Wroclaw, Poland; (A.L.); (M.T.)
| | - Aleksander Całkosiński
- Students’ Scientific Association of Biomaterials and Experimental Dentistry, Wroclaw Medical University, Bujwida 44 Street, 50-368 Wroclaw, Poland;
| | - Maciej Dobrzyński
- Department of Conservative Dentistry and Pedodontics, Wroclaw Medical University, Krakowska 26 Street, 50-425 Wroclaw, Poland;
| |
Collapse
|
5
|
Leśków A, Nawrocka M, Łątkowska M, Tarnowska M, Galas N, Matejuk A, Całkosiński I. Can contamination of the environment by dioxins cause craniofacial defects? Hum Exp Toxicol 2019; 38:1014-1023. [DOI: 10.1177/0960327119855121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cleft lip and cleft palate also known as orofacial cleft is a congenital malformation involving the partial or total lack of anatomical continuity of craniofacial tissue. The most common environmental factors that may cause orofacial clefts include pharmaceuticals, alcohol, addictive drugs, and tobacco smoke. Living in the area of industrial factories, garbage, ironworks, crematoria, wastewater treatment plants, and plastic waste landfills also has a significant impact on the development of the craniofacial defects. Some of the main factors causing the formation of congenital craniofacial defects are dioxins, of which emission to the environment is an important environmental and health problem. Dioxins are a diverse group of organic chemical compounds, derivatives of oxanthrene and fumarates, which are organoleptically imperceptible. Acting mainly through induction of inflammation, they influence a number of metabolic processes, including the process of bone mineralization and embryonic development. In this work, we highlight the problem of orofacial cleft including the impact of dioxin on development of this defect and the recommended prevention.
Collapse
Affiliation(s)
- A Leśków
- Department of Nervous System Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - M Nawrocka
- Department of Nervous System Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - M Łątkowska
- Department of Nervous System Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - M Tarnowska
- Department of Nervous System Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - N Galas
- Department of Nervous System Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - A Matejuk
- Department of Nervous System Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| | - I Całkosiński
- Department of Nervous System Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
6
|
Dobrzynski M, Kuropka P, Tarnowska M, Dudek K, Styczynska M, Leskow A, Targonska S, Wiglusz RJ. Indirect study of the effect of α-tocopherol and acetylsalicylic acid on the mineral composition of bone tissue in the offspring of female rats treated with 2,3,7,8-tetrachlorodibenzo- p-dioxin: long-term observations. RSC Adv 2019; 9:8016-8024. [PMID: 35547832 PMCID: PMC9087305 DOI: 10.1039/c8ra10485a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/15/2019] [Indexed: 11/21/2022] Open
Abstract
This paper discusses problems related to the influence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the mineral composition of the calvaria in the offspring of female rats. The female rats were administered with a single dose of TCDD and subsequently, after three-weeks, with α-tocopherol or acetylsalicylic acid. The research focused on analysis of the main mineral elements (Ca, Mg, Fe, Zn). The aim of the study was to determine the effect of dioxins and various doses of drugs on bone mineral composition in a six-month observation period. The mineral composition was analyzed using an atomic spectrometry method. Data were statistically analyzed and verified at a significance level of p = 0.05. The use of α-tocopherol normalizes bone resorption and formation disturbed by TCDD, maintaining the content of the studied elements at the physiological level. In turn, administration of acetylsalicylic acid limits the bone resorption process, which affects the element content.
Collapse
Affiliation(s)
- Maciej Dobrzynski
- Department of Conservative Dentistry and Pedodontics, The Faculty of Dentistry, Wroclaw Medical University Wroclaw Poland
| | - Piotr Kuropka
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences Wroclaw Poland
| | - Malgorzata Tarnowska
- Department of Nervous System Diseases, Faculty of Health Science, Wroclaw Medical University Wroclaw Poland
| | - Krzysztof Dudek
- Department of Logistics and Transport Systems, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology Wroclaw Poland
| | - Marzena Styczynska
- Department of Human Nutrition, Faculty of Food Science, Wroclaw University of Environmental and Life Sciences Wroclaw Poland
| | - Anna Leskow
- Department of Nervous System Diseases, Faculty of Health Science, Wroclaw Medical University Wroclaw Poland
| | - Sara Targonska
- Institute of Low Temperature and Structure Research, Polish Academy of Science Wroclaw Poland
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Science Wroclaw Poland
- Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences Wroclaw Poland
| |
Collapse
|