1
|
Baek K. Association between complex exposure to cadmium and mercury and atopic dermatitis in elementary school students: analysis using data from the Korean National Environmental Health Survey (KoNEHS) Cycle 4. Cent Eur J Public Health 2025; 33:3-11. [PMID: 40293823 DOI: 10.21101/cejph.a8437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/14/2025] [Indexed: 04/30/2025]
Abstract
OBJECTIVES Atopic dermatitis (AD) is a common allergic disease with potential links to environmental pollutants, including heavy metals. This study investigates the association between co-exposure to cadmium and mercury and AD among Korean children. METHODS Data from the fourth cycle of the Korean National Environmental Health Survey (KoNEHS) included 736 elementary school students. Urinary cadmium and mercury levels were measured, and their association with lifetime prevalence of AD was analysed using logistic regression, weighted quantile sum (WQS) regression, quantile g-computation (QGC), and Bayesian kernel machine regression (BKMR). Confounders adjusted included age, sex, urinary cotinine, income, and body mass index. Sensitivity analyses used symptomatic AD and AD treatment as outcome variables. RESULTS Among two metals, only cadmium in the highest tertile showed an odds ratio (OR) of 2.39 (95% CI: 1.12-5.10) compared with lowest tertile, with a significant trend per tertile increase (OR 1.58, 95% CI: 1.08-2.31) in multiple logistic regression. Co-exposure analysis using WQS and QGC revealed significant associations with AD prevalence, with WQS showing an OR of 1.47 (95% CI: 1.18-1.83) and QGC showing an OR of 1.60 (95% CI: 1.20-2.13) per tertile increase of exposure. BKMR indicated a dose-dependent relationship between overall exposure and AD risk. For symptomatic AD, similar trend was found. The treatment status of AD did not show a significant association with either heavy metal. CONCLUSION This study suggests a significant association between co-exposure to cadmium and mercury and atopic dermatitis, emphasizing the need to consider combined environmental exposures in epidemiological studies.
Collapse
Affiliation(s)
- Kiook Baek
- Department of Preventive Medicine, College of Medicine, Dongguk University Gyeongju, Gyeongju, Republic of Korea
- Department of Occupational and Environmental Medicine, Dongguk University Gyeongju Hospital, Gyeongju, Republic of Korea
- Department of Medicine, Graduate School of Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Jomova K, Alomar SY, Nepovimova E, Kuca K, Valko M. Heavy metals: toxicity and human health effects. Arch Toxicol 2025; 99:153-209. [PMID: 39567405 PMCID: PMC11742009 DOI: 10.1007/s00204-024-03903-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Heavy metals are naturally occurring components of the Earth's crust and persistent environmental pollutants. Human exposure to heavy metals occurs via various pathways, including inhalation of air/dust particles, ingesting contaminated water or soil, or through the food chain. Their bioaccumulation may lead to diverse toxic effects affecting different body tissues and organ systems. The toxicity of heavy metals depends on the properties of the given metal, dose, route, duration of exposure (acute or chronic), and extent of bioaccumulation. The detrimental impacts of heavy metals on human health are largely linked to their capacity to interfere with antioxidant defense mechanisms, primarily through their interaction with intracellular glutathione (GSH) or sulfhydryl groups (R-SH) of antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and other enzyme systems. Although arsenic (As) is believed to bind directly to critical thiols, alternative hydrogen peroxide production processes have also been postulated. Heavy metals are known to interfere with signaling pathways and affect a variety of cellular processes, including cell growth, proliferation, survival, metabolism, and apoptosis. For example, cadmium can affect the BLC-2 family of proteins involved in mitochondrial death via the overexpression of antiapoptotic Bcl-2 and the suppression of proapoptotic (BAX, BAK) mechanisms, thus increasing the resistance of various cells to undergo malignant transformation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of antioxidant enzymes, the level of oxidative stress, and cellular resistance to oxidants and has been shown to act as a double-edged sword in response to arsenic-induced oxidative stress. Another mechanism of significant health threats and heavy metal (e.g., Pb) toxicity involves the substitution of essential metals (e.g., calcium (Ca), copper (Cu), and iron (Fe)) with structurally similar heavy metals (e.g., cadmium (Cd) and lead (Pb)) in the metal-binding sites of proteins. Displaced essential redox metals (copper, iron, manganese) from their natural metal-binding sites can catalyze the decomposition of hydrogen peroxide via the Fenton reaction and generate damaging ROS such as hydroxyl radicals, causing damage to lipids, proteins, and DNA. Conversely, some heavy metals, such as cadmium, can suppress the synthesis of nitric oxide radical (NO·), manifested by altered vasorelaxation and, consequently, blood pressure regulation. Pb-induced oxidative stress has been shown to be indirectly responsible for the depletion of nitric oxide due to its interaction with superoxide radical (O2·-), resulting in the formation of a potent biological oxidant, peroxynitrite (ONOO-). This review comprehensively discusses the mechanisms of heavy metal toxicity and their health effects. Aluminum (Al), cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), and chromium (Cr) and their roles in the development of gastrointestinal, pulmonary, kidney, reproductive, neurodegenerative (Alzheimer's and Parkinson's diseases), cardiovascular, and cancer (e.g. renal, lung, skin, stomach) diseases are discussed. A short account is devoted to the detoxification of heavy metals by chelation via the use of ethylenediaminetetraacetic acid (EDTA), dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA), 2,3-dimercapto-1-propane sulfonic acid (DMPS), and penicillamine chelators.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, 949 74, Nitra, Slovakia
| | - Suliman Y Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
| | - Kamil Kuca
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
3
|
Yu S, Wang X, Zhang R, Chen R, Ma L. A review on the potential risks and mechanisms of heavy metal exposure to Chronic Obstructive Pulmonary Disease. Biochem Biophys Res Commun 2023; 684:149124. [PMID: 37897914 DOI: 10.1016/j.bbrc.2023.149124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a chronic disease that affects patients as well as the health and economic stability of society as a whole. At the same time, heavy metal pollution is widely recognized as having a possible impact on the environment and human health. Therefore, these diseases have become important global public health issues. In recent years, researchers have shown great interest in the potential association between heavy metal exposure and the development of COPD, and there has been a substantial increase in the number of related studies. However, we still face the challenge of developing a comprehensive and integrated understanding of this complex association. Therefore, this review aimed to evaluate the existing epidemiological studies to clarify the association between heavy metal exposure and COPD. In addition, we will discuss the biological mechanisms between the two to better understand the multiple molecular pathways and possible mechanisms of action involved, and provide additional insights for the subsequent identification of potential strategies to prevent and control the effects of heavy metal exposure on the development of COPD in individuals and populations.
Collapse
Affiliation(s)
- Shuxia Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Rongxuan Zhang
- Department of Respiratory, The Second People's Hospital of Lanzhou City, 730030, China
| | - Rentong Chen
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Signes-Pastor AJ, Notario-Barandiaran L, Guill M, Madan J, Baker E, Jackson B, Karagas MR. Prenatal exposure to metal mixtures and lung function in children from the New Hampshire birth cohort study. ENVIRONMENTAL RESEARCH 2023; 238:117234. [PMID: 37793590 DOI: 10.1016/j.envres.2023.117234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Prenatal exposure to metals/metalloids, even at common US population levels, may pose risks to fetal health, and affect children's lung function. Yet, the combined effects of simultaneous prenatal exposures on children's lung function remain largely unexplored. This study analyzed 11 metals (As speciation, Cd, Co, Cu, Mo, Ni, Pb, Sb, Se, Sn, Zn) in maternal urine during weeks 24-28 of gestation and evaluated lung function, including forced vital capacity (FVC) and forced expiratory volume in the first second of expiration (FEV1), in 316 US mother-child pairs at around age 7. We used Bayesian Kernel Machine Regression (BKMR), weighted quantile sum regression (WQSR), and multiple linear regression to examine the association between metal mixture exposure and children's lung function, adjusting for maternal smoking, child age, sex, and height. In BKMR models assessing combined exposure effects, limited evidence of metal non-linearity or interactions was found. Nevertheless, Co, As species, and Pb showed a negative association, while Mo exhibited a positive association with children's FVC and FEV1, with other metals held constant at their medians. The weighted index, from WQSR analysis assessing the cumulative impact of all metals, highlighted prenatal Mo with the highest positive weight, and Co, As, and Sb with the most substantial negative weights on children's FVC and FEV1. Urinary Co and Pb were negatively associated with FVC (β = -0.09, 95% confidence interval (CI) (-0.18; -0.01) and β = -0.07, 95% CI (-0.13; 0.00), respectively). Co was also negatively associated with FEV1 (β = -0.09, 95% CI (-0.18; 0.00). There was a negative association between As and FVC, and a positive association between Mo and both FVC and FEV1, though with wide confidence intervals. Our findings suggest that prenatal trace element exposures may impact children's lung function, emphasizing the importance of reducing toxic exposures and maintaining adequate nutrient levels.
Collapse
Affiliation(s)
- Antonio J Signes-Pastor
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, NH, USA; Unidad de Epidemiología de la Nutrición. Universidad Miguel Hernández, Alicante, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Spain.
| | - Leyre Notario-Barandiaran
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, NH, USA; Unidad de Epidemiología de la Nutrición. Universidad Miguel Hernández, Alicante, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Spain
| | - Margaret Guill
- Department of Pediatrics, Dartmouth College, Lebanon, NH, USA
| | - Juliette Madan
- Department of Pediatrics, Dartmouth College, Lebanon, NH, USA
| | - Emily Baker
- Department of Obstetrics & Gynecology, Division of Maternal Fetal Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Brian Jackson
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, NH, USA.
| |
Collapse
|
5
|
Pyatha S, Kim H, Lee D, Kim K. Co-exposure to lead, mercury, and cadmium induces neurobehavioral impairments in mice by interfering with dopaminergic and serotonergic neurotransmission in the striatum. Front Public Health 2023; 11:1265864. [PMID: 38026429 PMCID: PMC10662100 DOI: 10.3389/fpubh.2023.1265864] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Humans are exposed to lead (Pb), mercury (Hg), and cadmium (Cd) through various routes, including drinking water, and such exposure can lead to a range of toxicological effects. However, few studies have investigated the toxic effects of exposure to mixtures of metals, particularly in relation to neurotoxicity. In this study, 7-week-old male mice were exposed to Pb, Hg, and Cd individually or in combination through their drinking water for 28 days. The mice exposed to the metal mixture exhibited significantly reduced motor coordination and impaired learning and memory abilities compared to the control group and each of the single metal exposure groups, indicating a higher level of neurotoxicity of the metal mixture. The dopamine content in the striatum was significantly lower in the metal mixture exposure group than in the single metal exposure groups and the control group. Furthermore, compared to the control group, the metal mixture exposure group showed a significantly lower expression level of tyrosine hydroxylase (TH) and significantly higher expression levels of dopamine transporter (DAT), tryptophan hydroxylase 1 (TPH1), and serotonin reuptake transporter (SERT). Notably, there were no significant differences in SERT expression between the single metal exposure groups and the control group, but SERT expression was significantly higher in the metal mixture exposure group than in the single metal and control groups. These findings suggest that the key proteins involved in the synthesis and reuptake of dopamine (TH and DAT, respectively), as well as in the synthesis and reuptake of serotonin (TPH1 and SERT, respectively), play crucial roles in the neurotoxic effects associated with exposure to metal mixtures. In conclusion, this study demonstrates that simultaneous exposure to different metals can impact key enzymes involved in dopaminergic and serotonergic neurotransmission processes, leading to disruptions in dopamine and serotonin homeostasis and consequently a range of detrimental neurobehavioral effects.
Collapse
Affiliation(s)
| | | | | | - Kisok Kim
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
6
|
Nguyen HD. Effects of mixed heavy metals on obstructive lung function: findings from epidemiological and toxicogenomic data. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8663-8683. [PMID: 37700191 DOI: 10.1007/s10653-023-01746-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
The molecular mechanisms and associations of mixed heavy metals (lead, mercury, and cadmium) on obstructive lung function (OLF) in males and females remain unknown. Here, we evaluated the interaction between the forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) ratio and three common heavy metals in males and females (n = 6221). Molecular processes involved in OLF development caused by mixed heavy metals were also identified to corroborate the earlier findings. In both males and females, as well as across the entire population, we found that serum cadmium levels were inversely related to the FEV1/FVC ratio. Interactions between serum cadmium and lead, as well as cadmium and mercury, were observed in relation to the FEV1/FVC ratio. Additionally, we observed negative correlations between the FEV1/FVC ratio and mixed serum cadmium, lead, and mercury in both men and women as well as in the overall population. Seven genes were identified as contributing to the etiology of OLF and targeted by combined heavy metals in silico analysis (CYP1A1, CRP, CXCL8, HMOX1, IL6, NOS2, and TNF). The primary relationships between these genes were co-expression interactions. The significant transcription factors and miRNAs associated with OLF and a combination of the examined heavy metals were identified as NFKB2, hsa-miR-155-5p, and hsa-miR-203a-3p. The main biological processes involved in the emergence of OLF induced by mixed heavy metals were listed as inflammatory and oxidative stress pathways, lung fibrosis, chronic obstructive pulmonary disease, as well as cytokine activity, monooxygenase activity, oxidoreductase activity, and interleukin-8 production. Threshold estimations and miRNA sponge patterns for heavy metal exposure levels associated with OLF were evaluated for both males and females. This study found that cadmium plays the most important role in the mixture of cadmium, lead, and mercury in the pathogenesis of OLF. Future studies are required to verify our findings and uncover the molecular mechanisms of long-term exposure to a variety of heavy metals, especially cadmium, in other populations, including children, adolescents, and the elderly.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, 57922, Republic of Korea.
| |
Collapse
|
7
|
Chen C, Zhang S, Yang T, Wang C, Han G. Associations between environmental heavy metals exposure and preserved ratio impaired spirometry in the U.S. adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108274-108287. [PMID: 37749472 PMCID: PMC10611825 DOI: 10.1007/s11356-023-29688-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/23/2023] [Indexed: 09/27/2023]
Abstract
We examined 9556 individuals aged 18 to 79 years who had information on spirometry testing and heavy metals and used multivariable logistic or linear regression to evaluate associations between serum levels of cadmium, lead, and mercury and PRISm and lung function in U.S. adults, which were conducted first in all participants, and then separately in never/former smokers and current smokers. The overall prevalence of PRISm was 7.02%. High levels of serum cadmium were significantly associated with PRISm in all individuals, no matter in never/former smokers (quartile 4 vs 1, the OR = 2.517, 95% CI = 1.376-4.604, p-trend = 0.0077) and current smokers (quartile 4 vs 1, the OR = 2.201, 95% CI = 1.265-3.830, p-trend = 0.0020). Serum lead and mercury were not significantly correlated with PRISm, regardless of smoking status. Serum cadmium was strongly correlated with lower FEV1/FVC, regardless of smoking status. Besides, serum cadmium was also significantly related to lower FVC % predicted in never/former smokers and lower FEV1% predicted in current smokers. Serum lead was strongly correlated with lower FVC % predicted and FEV1/FVC in all individuals and never/former smokers. And serum mercury was significantly associated with decrements in FVC % predicted in all individuals and current smokers. These findings demonstrate that serum cadmium is associated with a higher risk of PRISm and lower lung function, with the most significant effect on FEV1/FVC in particular. Our results also indicate that exposure to lead and mercury negatively affects lung function in never/former smokers and current smokers, respectively.
Collapse
Affiliation(s)
- Chen Chen
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Shunan Zhang
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Ting Yang
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Chen Wang
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Guiling Han
- National Center for Respiratory MedicineNational Clinical Research Center for Respiratory DiseasesInstitute of Respiratory MedicineDepartment of Traditional Chinese Medicine for Pulmonary Diseases, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| |
Collapse
|
8
|
Zhong Q, Zhou W, Lin J, Sun W, Qin Y, Li X, Xu H. Independent and Combined Associations of Blood Manganese, Cadmium and Lead Exposures with the Systemic Immune-Inflammation Index in Adults. TOXICS 2023; 11:659. [PMID: 37624164 PMCID: PMC10457758 DOI: 10.3390/toxics11080659] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023]
Abstract
Manganese (Mn), cadmium (Cd) and lead (Pb) have toxic effects on the immune system. However, their independent and combined effects on immune-inflammation responses are unclear. In recent years, the systemic immune-inflammation index (SII) has been developed as an integrated and novel inflammatory indicator. A retrospective cross-sectional study of 2174 adults ≥20 years old from the National Health and Nutrition Examination Survey (NHANES) 2015-2016 was conducted. Generalized linear models were used to evaluate the independent and combined associations of SII with blood Mn, Cd and Pb levels. As continuous variables, both blood Cd and Mn showed dose-dependent relationships with the SII before and after adjusting for all potential confounding factors. Metal concentrations were then converted into categorical variables. Compared with the adults in the lowest Cd or Mn tertile, those in the highest tertile had higher risks of elevated SII. Furthermore, co-exposure to Mn and Cd also showed a positive relationship with the SII after adjusting for all confounding factors. However, the single effect of Pb exposure and the joint effect of Pb and other metal exposures on the SII were not observed. This study provides important epidemiological evidence of the associations of SII with single and co-exposure effects of blood Mn, Cd, and Pb.
Collapse
Affiliation(s)
- Qiya Zhong
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China;
| | - Wenxin Zhou
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China; (W.Z.); (J.L.); (W.S.); (Y.Q.)
| | - Jiaqi Lin
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China; (W.Z.); (J.L.); (W.S.); (Y.Q.)
| | - Wen Sun
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China; (W.Z.); (J.L.); (W.S.); (Y.Q.)
| | - Yao Qin
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China; (W.Z.); (J.L.); (W.S.); (Y.Q.)
| | - Xiang Li
- School of Nursing, Yanbian University, Yanji 133000, China;
| | - Huadong Xu
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China; (W.Z.); (J.L.); (W.S.); (Y.Q.)
| |
Collapse
|
9
|
Leng F, Zhang K, Hu S, Li S, Yu C, Wang Y. Exopolysaccharides of Serratia fonticola CPSE11 can alleviate the toxic effect of Cd 2+ on Codonopsis pilosula. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80378-80392. [PMID: 37296251 DOI: 10.1007/s11356-023-28145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
In order to study the detoxification effect of microbial exopolysaccharides (EPS) on the heavy metal cadmium (Cd2+), this study took an EPS-producing Serratia fonticola CPSE11 (NZ_CP050171.1) isolated from Codonopsis pilosula root as the research object. The whole genome and EPS synthesis gene clusters of this strain were predicted and analyzed, the adsorption kinetics of EPS on Cd2+ were studied by using pseudo-first-order and second-order kinetic equations, the isothermal adsorption curves were simulated and analyzed by using the Langmuir isothermal adsorption equation, and the effects of Cd2+ and EPS on the growth of C. pilosula were explored by seed germination experiment and hydroponic experiment. The analysis revealed that this strain contained three gene clusters related to EPS synthesis, and the metabolic pathway for EPS synthesis was obtained on the basis of the whole genome analysis and microbial physiological metabolism. The molecular weight and monosaccharide composition of EPS were determined by HPLC analysis, which showed that EPS consisted of mannose, glucosamine, rhamnose, galactosamine, glucose, and galactose with a molar ratio of 1:1.74:4.57:3.96:14.04:10.28, with the molecular weight of 366,316.09 kDa. The adsorption process of EPS on Cd2+ was in accordance with the second-order kinetic model, and the results of seed germination experiments showed that EPS could promote seed germination and improve seed activity. In the hydroponic experiment, high concentration of Cd2+ (15 mg/L) caused toxic symptoms in C. pilosula, while the addition of EPS reduced the toxic effect of Cd2+ on C. pilosula, and the plant growth was significantly improved.
Collapse
Affiliation(s)
- Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Kexin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shu Hu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shaowei Li
- National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengqun Yu
- National Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
| |
Collapse
|
10
|
Nguyen HD. Cadmium, lead, and mercury interactions on obstructive lung function in pre- and postmenopausal women. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27503-2. [PMID: 37191746 DOI: 10.1007/s11356-023-27503-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
There was a dearth of information on how heavy metals affect women's lung function. To assess the effects of cadmium, lead, and mercury and their interactions on obstructive lung function in pre- and postmenopausal women. The associations between an individual heavy metal and its mixtures and the first second of forced expiration (FEV1)/forced vital capacity (FVC) were studied using multivariate non-linear, linear, and logistic regression models, Bayesian kernel machine regression (BKMR), and marginal effects in 1821 women. Serum cadmium and lead levels and the percentage of FEV1/FVC < 70% were substantially higher in postmenopausal women than in premenopausal women. Cadmium (β = - 0.84, 95%, - 1.63 to - 0.05) and lead (β = - 0.43, 95%CI, - 1.62 to - 0.04) were found to be inversely associated with the FEV1/FVC ratio in premenopausal women, while a combination of cadmium and mercury showed a negative association with the FEV1/FVC ratio in postmenopausal women (β = - 0.65, 95%CI, - 1.27 to - 0.03). In the non-linear regression model, an inverted U-shape association of mercury with FEV1/FVC indicator was found in postmenopausal women (β = - 0.78, 95%CI, - 1.41 to - 0.15). In BKMR model, a mixture of three heavy metals was negatively associated with the FEV1/FVC ratio. Cadmium was identified as an important substance associated with lung function decline (posterior inclusion probabilities (PIPs) = 0.731 in premenopausal and PIPs = 0.514 in postmenopausal women). Cadmium appeared linear; an inverted U-shape association of mercury with the FEV1/FVC indicator and slightly positive associations of lead with the FEV1/FVC indicator in postmenopausal women were found. Threshold cutoff values for the studied substances related to clinical lung function decline were established. In conclusion, the presence of mixed heavy metals (cadmium, lead, and mercury) and their association with obstructive lung function showed worse results than separate associations. These findings have important implications for policy and future research about how heavy metals affect women's lungs.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam, Republic of Korea.
| |
Collapse
|
11
|
Chen Y, Zhao A, Li R, Kang W, Wu J, Yin Y, Tong S, Li S, Chen J. Independent and combined associations of multiple-heavy-metal exposure with lung function: a population-based study in US children. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01565-0. [PMID: 37097600 DOI: 10.1007/s10653-023-01565-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Previous research has found relationships between some single metals and lung function parameters. However, the role of simultaneous multi-metal exposure is poorly understood. The crucial period throughout childhood, when people are most susceptible to environmental dangers, has also been largely ignored. The study aimed to evaluate the joint and individual associations of 12 selected urinary metals with pediatric lung function measures using multi-pollutant approaches. A total of 1227 children aged 6-17 years from the National Health and Nutrition Examination Survey database of the 2007-2012 cycles were used. The metal exposure indicators were 12 urine metals adjusted for urine creatinine, including arsenic (As), barium (Ba), cadmium (Cd), cesium (Cs), cobalt (Co), mercury (Hg), molybdenum (Mo), lead (Pb), antimony (Sb), thallium (Tl), tungsten (Tu), and uranium (Ur). The outcomes of interest were lung function indices, including the 1st second of a forceful exhalation (FEV1), forced vital capacity (FVC), forced expiratory flow between 25 and 7% of vital capacity (FEF25-75%), and peak expiratory flow (PEF). Multivariate linear regression, quantile g-computation (QG-C), and Bayesian kernel machine regression models (BKMR) were adopted. A significantly negative overall effect of metal mixtures on FEV1 (β = - 161.70, 95% CI - 218.12, - 105.27; p < 0.001), FVC (β = - 182.69, 95% CI - 246.33, - 119.06; p < 0.001), FEF25-75% (β = - 178.86 (95% CI - 274.47, - 83.26; p < 0.001), and PEF (β = - 424.17, 95% CI - 556.55, - 291.80; p < 0.001) was observed. Pb had the largest negative contribution to the negative associations, with posterior inclusion probabilities (PIPs) of 1 for FEV1, FVC, and FEF25-75%, and 0.9966 for PEF. And Pb's relationship with lung function metrics showed to be nonlinear, with an approximate "L" shape. Potential interactions between Pb and Cd in lung function decline were observed. Ba was positively associated with lung function metrics. Metal mixtures were negatively associated with pediatric lung function. Pb might be a crucial element. Our findings highlight the need for prioritizing children's environmental health to protect them from later respiratory disorders and to guide future research into the toxic mechanisms of metal-mediated lung function injury in the pediatric population.
Collapse
Affiliation(s)
- Yiting Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Huangpu District, Shanghai, China
| | - Anda Zhao
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Huangpu District, Shanghai, China
| | - Wenhui Kang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Huangpu District, Shanghai, China
| | - Jinhong Wu
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Yin
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shilu Tong
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Huangpu District, Shanghai, China
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Shenghui Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Huangpu District, Shanghai, China.
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jianyu Chen
- College of Public Health, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China.
| |
Collapse
|
12
|
Lv BB, Yang CL, Tan ZX, Zheng L, Li MD, Jiang YL, Liu L, Tang MM, Hua DX, Yang J, Xu DX, Zhao H, Fu L. Association between cadmium exposure and pulmonary function reduction: Potential mediating role of telomere attrition in chronic obstructive pulmonary disease patients. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114548. [PMID: 36652742 DOI: 10.1016/j.ecoenv.2023.114548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Environmental cadmium (Cd) exposure is linked to pulmonary function injury in the general population. But, the association between blood Cd concentration and pulmonary function has not been investigated thoroughly in chronic obstructive pulmonary disease (COPD) patients, and the potential mechanisms are unclear. METHODS All eligible 789 COPD patients were enrolled from Anhui COPD cohort. Blood specimens and clinical information were collected. Pulmonary function test was conducted. The subunit of telomerase, telomerase reverse transcriptase (TERT), was determined through enzyme linked immunosorbent assay (ELISA). Blood Cd was measured via inductively coupled-mass spectrometer (ICP-MS). RESULTS Blood Cd was negatively and dose-dependently associated with pulmonary function. Each 1-unit increase of blood Cd was associated with 0.861 L decline in FVC, 0.648 L decline in FEV1, 5.938 % decline in FEV1/FVC %, and 22.098 % decline in FEV1 % among COPD patients, respectively. Age, current-smoking, self-cooking and higher smoking amount aggravated Cd-evoked pulmonary function decrease. Additionally, there was an inversely dose-response association between Cd concentration and TERT in COPD patients. Elevated TERT obviously mediated 29.53 %, 37.50 % and 19.48 % of Cd-evoked FVC, FEV1, and FEV1 % declines in COPD patients, respectively. CONCLUSION Blood Cd concentration is strongly associated with the decline of pulmonary function and telomerase activity among COPD patients. Telomere attrition partially mediates Cd-induced pulmonary function decline, suggesting an underlying mechanistic role of telomere attrition in pulmonary function decline from Cd exposure in COPD patients.
Collapse
Affiliation(s)
- Bian-Bian Lv
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Department of Toxicology, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chun-Lan Yang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhu-Xia Tan
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Ling Zheng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Meng-Die Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Ya-Lin Jiang
- Department of Respiratory and Critical Care Medicine, Bozhou People's Hospital, Bozhou, Anhui 236800, China
| | - Ling Liu
- Department of Respiratory and Critical Care Medicine, People's Hospital of Yingshang, Fuyang, Anhui 236000, China
| | - Min-Min Tang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Dong-Xu Hua
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Jin Yang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Department of Toxicology, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
13
|
Zhou S, Wang Y, Yu C, Ding C, He J, Liu Y, Wang H, Ni C. Metal Exposure-Related Welder's Pneumoconiosis and Lung Function: A Cross-Sectional Study in a Container Factory of China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16809. [PMID: 36554689 PMCID: PMC9779211 DOI: 10.3390/ijerph192416809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Long-term inhalation of welding fume at high exposure can cause welder's pneumoconiosis, and metals in welding dust are associated with respiratory dysfunction. This cross-sectional study, which contains 384 Chinese male workers who were or had been working in a container factory, aimed to assess the potential risk of haemal and urinary metal content in welder's pneumoconiosis. Further, we investigated their effects on lung function parameters. Metal content and lung function were measured using inductively coupled plasma-mass spectrometry (ICP-MS) and spirometer, respectively. The concentration and metal content of respirable dust as well as total dust were collected at this container factory. Lung function of cases with welder's pneumoconiosis was significantly worse, as indicated by lower values of FVC, FVC% predicted, FEV1, FEV1% predicted, MEF25% predicted, and MMEF% predicted (p < 0.05). Results of logistic regression models showed that haemal Cr and Zn were risk factors of welder's pneumoconiosis (OR = 4.98, 95%CI: 1.73-21.20, p = 0.009 for Cr; OR = 5.23, 95%CI: 1.56-41.08, p = 0.033 for Zn) after adjusted with age, BMI, working years, welding dust exposure years, and smoking status. Multiple linear regression models showed that several metals (haemal Cd and Pb; urinary Cd and Fe) were significantly associated with different lung function indices in the welder's pneumoconiosis group. Compared to non-welders, welders were exposed to considerably higher levels of respirable dust, total dust, and six kinds of metals (p < 0.05). In conclusion, haemal Cr and Zn are positively related to welder's pneumoconiosis. Meanwhile, Cd and Pb might worsen lung function in welder's pneumoconiosis.
Collapse
Affiliation(s)
- Siyun Zhou
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yue Wang
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chen Yu
- Department of Occupational Respiratory Disease, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, Beijing 102300, China
| | - Jiayu He
- Department of Occupational Respiratory Disease, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yi Liu
- Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Huanqiang Wang
- Department of Occupational Respiratory Disease, National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
14
|
Abdul Haddi AA, Ja’afar MH, Ismail H. Association between lung function impairment with urinary heavy metals in a community in Klang Valley, Malaysia. PeerJ 2022; 10:e13845. [PMID: 35966922 PMCID: PMC9373978 DOI: 10.7717/peerj.13845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/14/2022] [Indexed: 01/18/2023] Open
Abstract
Lung function status can be directly or indirectly affected by exposure to pollutants in the environment. Urinary heavy metals may be an indirect indicator of lung function impairment that leads to various diseases such as chronic obstructive pulmonary disease (COPD). This study aimed to explore the prevalence of lung function impairment as well as its association with urinary heavy metal levels and other influencing factors among the community in Klang Valley, Malaysia. Urinary sampling was done during various community events in the housing areas of Klang Valley between March and October 2019. Only respondents who consented would undergo a lung function test. Urine samples were obtained and sent for Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis for heavy metal cadmium (Cd) and lead (Pb) concentration. Of the 200 recruited respondents, 52% were male and their ages ranged from 18 years old to 74 years old with a mean age of 38.4 ± 14.05 years. Urinary samples show high urinary Cd level in 12% of the respondents (n = 24) whereas none recorded a high urinary Pb level. There was a positive correlation between the levels of urinary Cd and urinary Pb (r = 0.303; p = 0.001). Furthermore, a negative correlation was detected between urinary Cd level and forced vital capacity (FVC) (r = - 0.202, p = 0.004), force expiratory volume at the first second (FEV1) (r = - 0.225, p = 0.001), and also force expiratory flow between 25-75% of FVC (FEF 25-75%) (r = - 0.187, p = 0.008). However, urinary Pb did not show any correlation with lung function parameters. Multiple linear regression analysis showed that urinary Cd had a significant negative effect on FVC (p = 0.025) and FEV1 (p = 0.004) based on the predicted value. Additionally, other factors such as education level (p = 0.013) also influenced lung function. However, no interaction was detected between heavy metals or other factors. In short, there was a significant negative linear relationship between urinary Cd and lung function, whereas urinary Pb was not associated with lung function. Beside acting as a biomarker for cadmium exposure level, urinary Cd may also be applied as indirect biomarker for asymptomatic chronic lung function deterioration among the healthy population.
Collapse
Affiliation(s)
- Ammar Amsyar Abdul Haddi
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia,Ministry of Health, Putrajaya, Malaysia
| | - Mohd Hasni Ja’afar
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Halim Ismail
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Elonheimo HM, Mattila T, Andersen HR, Bocca B, Ruggieri F, Haverinen E, Tolonen H. Environmental Substances Associated with Chronic Obstructive Pulmonary Disease-A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3945. [PMID: 35409627 PMCID: PMC8997594 DOI: 10.3390/ijerph19073945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a slowly developing non-communicable disease (NCD), causing non-reversible obstruction and leading to marked morbidity and mortality. Besides traditional risk factors such as smoking, some environmental substances can augment the risk of COPD. The European Human Biomonitoring Initiative (HBM4EU) is a program evaluating citizens' exposure to various environmental substances and their possible health impacts. Within the HBM4EU, eighteen priority substances or substance groups were chosen. In this scoping review, seven of these substances or substance groups are reported to have an association or a possible association with COPD. Main exposure routes, vulnerable and high-exposure risk groups, and matrices where these substances are measured are described. Pesticides in general and especially organophosphate and carbamate insecticides, and some herbicides, lead (Pb), and polycyclic aromatic hydrocarbons (PAHs) showed an association, and cadmium (Cd), chromium (Cr and CrVI), arsenic (As), and diisocyanates, a possible association with COPD and/or decreased lung function. Due to long latency in COPD's disease process, the role of chemical exposure as a risk factor for COPD is probably underestimated. More research is needed to support evidence-based conclusions. Generally, chemical exposure is a growing issue of concern, and prompt action is needed to safeguard public health.
Collapse
Affiliation(s)
- Hanna Maria Elonheimo
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (T.M.); (E.H.); (H.T.)
| | - Tiina Mattila
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (T.M.); (E.H.); (H.T.)
- Department of Pulmonary Diseases, Heart and Lung Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Helle Raun Andersen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, DK-5000 Odense, Denmark;
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.B.); (F.R.)
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, 00161 Rome, Italy; (B.B.); (F.R.)
| | - Elsi Haverinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (T.M.); (E.H.); (H.T.)
| | - Hanna Tolonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (T.M.); (E.H.); (H.T.)
| |
Collapse
|
16
|
Jiang YL, Fei J, Cao P, Zhang C, Tang MM, Cheng JY, Zhao H, Fu L. Serum cadmium positively correlates with inflammatory cytokines in patients with chronic obstructive pulmonary disease. ENVIRONMENTAL TOXICOLOGY 2022; 37:151-160. [PMID: 34652871 DOI: 10.1002/tox.23386] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/27/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cadmium is a ubiquitous toxic heavy metal and environmental toxicant. Inflammation exerts central roles in the process of chronic obstructive pulmonary disease (COPD). However, few epidemiological studies on the correlation between cadmium exposure and COPD are available. The aim of this study was to evaluate the correlations among serum cadmium, inflammatory cytokines and pulmonary function in COPD patients. METHODS All 940 COPD patients were finally recruited in this study. Demographic characteristics and clinical information were extracted. Fasting serum was collected. Serum cadmium was detected through graphite furnace atomic absorption spectrophotometry. Serum inflammatory cytokines were measured using enzyme-linked immunosorbent assay. RESULTS All patients were classified into three groups according to the tertile division of serum cadmium concentration: low (<0.77 μg/L, L), medium (0.77-1.01 μg/L, M), and high (1.01 μg/L, H). Logistic regression analysis found that serum cadmium was inversely correlated with pulmonary function before and after adjusted confounding variables. When stratified by gender, serum cadmium was still negatively correlated with pulmonary function in COPD patients. Moreover, higher serum cadmium elevated CAT (COPD Assessment Test) score before and after adjusted confounding variables. Though a non-linear association between serum cadmium and inflammatory cytokines, serum cadmium was positively associated with inflammatory cytokines (TNF-α and MCP-1). TNF-α and MCP-1 exerted a partial mediator in the association between cadmium exposure and pulmonary function decline in COPD patients. CONCLUSIONS Serum cadmium concentration is inversely correlated with pulmonary function among COPD patients. Inflammatory cytokines may be important mediators for cadmium-induced pulmonary function decline in COPD patients.
Collapse
Affiliation(s)
- Ya-Lin Jiang
- Bozhou People's Hospital of Anhui Medical University, Bozhou, China
| | - Jun Fei
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Peng Cao
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Chen Zhang
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Min-Min Tang
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jia-Yi Cheng
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hui Zhao
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lin Fu
- The Second Affiliated Hospital, Anhui Medical University, Hefei, China
- Department of Toxicology, Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Zheng L, Jiang YL, Fei J, Cao P, Zhang C, Xie GF, Wang LX, Cao W, Fu L, Zhao H. Circulatory cadmium positively correlates with epithelial-mesenchymal transition in patients with chronic obstructive pulmonary disease. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112164. [PMID: 33756289 DOI: 10.1016/j.ecoenv.2021.112164] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Environmental cadmium (Cd) exposure can cause several pulmonary diseases. Epithelial-mesenchymal transition (EMT) involved in the process of chronic obstructive pulmonary disease (COPD). However, the association between environmental Cd exposure and EMT was unclear in COPD patients. This study aimed to analyze the associations among circulatory Cd, EMT and COPD based on case-control study. Four hundred COPD patients and 400 control subjects were recruited. Circulatory Cd was detected using atomic adsorption spectrometer. MicroRNA-30 (miR-30) was measured by RT-PCR and the markers of pulmonary EMT were evaluated through western blotting. Circulatory Cd concentration was increased and serum miR-30 was decreased in COPD patients. Circulatory Cd was inversely associated with pulmonary function in COPD patients. Moreover, serum miR-30 was gradually decreased in parallel with FEV1 in COPD patients. Meanwhile, there was a negative association between serum miR-30 and circulatory Cd in COPD patients. Further analysis found that E-cadherin, one of epithelial biomarkers, was reduced in lung tissues of COPD patients with higher circulatory Cd. On the contrary, pulmonary N-cadherin, Vimentin and α-SMA, three of mesenchymal biomarkers, were increased in COPD patients with higher circulatory Cd. In vitro experiments revealed that Cd exposure repressed miR-30 levels and promoted EMT in BEAS-2B cells. Our results provide evidence that miR-30 reduction contributing to pulmonary EMT may involve in the process of Cd-induced COPD.
Collapse
Affiliation(s)
- Ling Zheng
- The Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Ya-Lin Jiang
- The Bozhou People's Hospital, Bozhou 236800, China
| | - Jun Fei
- The Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Peng Cao
- The Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Chen Zhang
- The Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Guo-Fang Xie
- The Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Li-Xiang Wang
- The Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Wei Cao
- The Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China
| | - Lin Fu
- The Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| | - Hui Zhao
- The Second Affiliated Hospital, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
18
|
Skalny AV, Lima TRR, Ke T, Zhou JC, Bornhorst J, Alekseenko SI, Aaseth J, Anesti O, Sarigiannis DA, Tsatsakis A, Aschner M, Tinkov AA. Toxic metal exposure as a possible risk factor for COVID-19 and other respiratory infectious diseases. Food Chem Toxicol 2020; 146:111809. [PMID: 33069759 PMCID: PMC7563920 DOI: 10.1016/j.fct.2020.111809] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023]
Abstract
Multiple medical, lifestyle, and environmental conditions, including smoking and particulate pollution, have been considered as risk factors for COronaVIrus Disease 2019 (COVID-19) susceptibility and severity. Taking into account the high level of toxic metals in both particulate matter (PM2.5) and tobacco smoke, the objective of this review is to discuss recent data on the role of heavy metal exposure in development of respiratory dysfunction, immunotoxicity, and severity of viral diseases in epidemiological and experimental studies, as to demonstrate the potential crossroads between heavy metal exposure and COVID-19 severity risk. The existing data demonstrate that As, Cd, Hg, and Pb exposure is associated with respiratory dysfunction and respiratory diseases (COPD, bronchitis). These observations corroborate laboratory findings on the role of heavy metal exposure in impaired mucociliary clearance, reduced barrier function, airway inflammation, oxidative stress, and apoptosis. The association between heavy metal exposure and severity of viral diseases, including influenza and respiratory syncytial virus has been also demonstrated. The latter may be considered a consequence of adverse effects of metal exposure on adaptive immunity. Therefore, reduction of toxic metal exposure may be considered as a potential tool for reducing susceptibility and severity of viral diseases affecting the respiratory system, including COVID-19.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, Russia.
| | - Thania Rios Rossi Lima
- São Paulo State University - UNESP, Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Botucatu, SP, Brazil; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Svetlana I Alekseenko
- I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russia; K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia
| | - Jan Aaseth
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Ourania Anesti
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thermi, Greece
| | - Dimosthenis A Sarigiannis
- HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki, Thermi, Greece; University School of Advanced Studies IUSS, Pavia, Italy
| | - Aristides Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
19
|
Pan Z, Zhang X, Hui Y, Xiang H, Wang Q, Xu S, Li L. Sex Difference Between Trace Elements and Pulmonary Functions in Children. Biol Trace Elem Res 2020; 197:405-410. [PMID: 32060730 DOI: 10.1007/s12011-019-02019-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
It has been defined that deficiency of trace elements plays an important role in the progression of asthma. However, the relationship between blood zinc (Zn), selenium (Se), and magnesium (Mg) and pulmonary functions in children remains to be clarified. A cross-sectional study was conducted in Wuxi, China, and a total of 202 healthy children were recruited. The forced vital capacity volume (FVC) and forced expiratory volume in the 1 s (FEV1) were measured. Blood samples were collected, and the levels of blood zinc, selenium, and magnesium were measured by inductively coupled plasma mass spectrometry (ICP-MS). Meanwhile, the concentrations of serum total IgE was also determined. The associations between trace elements and pulmonary functions were analyzed by multiple linear regression models. After stratified by sex, there was a positive association between blood Zn and pulmonary functions in boys. In addition, blood Zn was also negatively associated with serum total IgE concentrations in boys, but not in girls after adjusting for potential confounders. Our findings indicated that zinc deficiency was significantly related to children's pulmonary functions and that screening of trace elements may be a potential solution to decrease the risks of asthma in children.
Collapse
Affiliation(s)
- Zhenzhen Pan
- Department of Pediatric Respiratory, Wuxi Children's Hospital, Wuxi, 214023, Jiangsu Province, People's Republic of China
| | - Xiaojuan Zhang
- Department of Pediatric Respiratory, Wuxi Children's Hospital, Wuxi, 214023, Jiangsu Province, People's Republic of China
| | - Yu Hui
- Department of Pediatric Respiratory, Wuxi Children's Hospital, Wuxi, 214023, Jiangsu Province, People's Republic of China
| | - Hongxia Xiang
- Department of Pediatric Respiratory, Wuxi Children's Hospital, Wuxi, 214023, Jiangsu Province, People's Republic of China
| | - Qian Wang
- Department of Pediatric Respiratory, Wuxi Children's Hospital, Wuxi, 214023, Jiangsu Province, People's Republic of China
| | - Shiyao Xu
- Department of Pediatric Respiratory, Wuxi Children's Hospital, Wuxi, 214023, Jiangsu Province, People's Republic of China
| | - Ling Li
- Department of pediatric respiratory, Wuxi children's hospital, No. 299-1 at Qingyang Road, Liangxi District, Wuxi, 214023, Jiangsu Province, People's Republic of China.
| |
Collapse
|