1
|
Kallepalli B, Garg U, Jain N, Nagpal R, Malhotra S, Tiwari T, Kaul S, Nagaich U. Intelligent Drug Delivery: Pioneering Stimuli-Responsive Systems to Revolutionize Disease Management- An In-depth Exploration. Curr Drug Deliv 2025; 22:195-214. [PMID: 38310439 DOI: 10.2174/0115672018278641231221051359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 02/05/2024]
Abstract
In recent years, there has been an escalating interest in stimuli-responsive drug delivery systems (SRDDS) due to their ability to revolutionize the delivery of therapeutics. SRDDSs offer a multitude of benefits in comparison to conventional drug delivery systems (DDS), including spatiotemporal control of drug release, targeted delivery, and improved therapeutic efficacy. The development of various classes of stimuli-responsive DDS, such as pH-responsive, temperature-responsive, photo-responsive, redox responsive systems, has been propelled by advances in materials science, nanotechnology, and biotechnology. These systems exploit specific environmental or physiological cues to trigger drug release in a precisely controlled manner, making them highly promising for the treatment of various diseases. In this review article, an in-depth exploration of the principles, mechanisms, and applications of SRDDS in the context of diverse pathologies such as cancer, arthritis, Alzheimer's disease, atherosclerosis and tissue engineering has been provided. Furthermore, this article delves into the discussion of recent patents, market overview and the progress of research in clinical trials. Overall, this article underscores the transformative potential of SRDDS in enabling personalized, precise, and effective drug delivery for the treatment of the above-mentioned diseases.
Collapse
Affiliation(s)
- Badarinadh Kallepalli
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Unnati Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Rohan Nagpal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Sakshi Malhotra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Triveni Tiwari
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Nautiyal G, Sharma SK, Kaushik D, Pandey P. Nano - Based Therapeutic Strategies in Management of Rheumatoid Arthritis. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:433-456. [PMID: 37904559 DOI: 10.2174/1872210517666230822100324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease, progressively distinctive via cartilage destruction, auto-antibody production, severe joint pain, and synovial inflammation. Nanotechnology represents as one of the utmost promising scientific technologies of the 21st century. It exhibits remarkable potential in the field of medicine, including imaging techniques and diagnostic tools, drug delivery systems and providing advances in treatment of several diseases with nanosized structures (less than 100 nm). OBJECTIVE Conventional drugs as a cornerstone of RA management including disease-modifying antirheumatic drugs (DMARDS), Glucocorticosteroids, etc are under clinical practice. Nevertheless, their low solubility profile, poor pharmacokinetics behaviour, and non-targeted distribution not only hamper their effectiveness, but also give rise to severe adverse effects which leads to the need for the emergence of nanoscale drug delivery systems. METHODS Several types of nano-diagnostic agents and nanocarriers have been identified; including polymeric nanoparticles (NPs), liposomes, nanogels, metallic NPs, nanofibres, carbon nanotubes, nano fullerene etc. Various patents and clinical trial data have been reported in relevance to RA treatment. RESULTS Nanocarriers, unlike standard medications, encapsulate molecules with high drug loading efficacy and avoid drug leakage and burst release before reaching the inflamed sites. Because of its enhanced targeting specificity with the ability to solubilise hydrophobic drugs, it acts as an enhanced drug delivery system. CONCLUSION This study explores nanoparticles potential role in RA as a carrier for site-specific delivery and its promising strategies to overcome the drawbacks. Hence, it concludes that nanomedicine is advantageous compared with conventional therapy to enhanced futuristic approach.
Collapse
Affiliation(s)
- Gunjan Nautiyal
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Shiv Kant Sharma
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Dhirender Kaushik
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| |
Collapse
|
3
|
Aldrich JL, Panicker A, Ovalle R, Sharma B. Drug Delivery Strategies and Nanozyme Technologies to Overcome Limitations for Targeting Oxidative Stress in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:1044. [PMID: 37513955 PMCID: PMC10383173 DOI: 10.3390/ph16071044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/26/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress is an important, but elusive, therapeutic target for osteoarthritis (OA). Antioxidant strategies that target oxidative stress through the elimination of reactive oxygen species (ROS) have been widely evaluated for OA but are limited by the physiological characteristics of the joint. Current hallmarks in antioxidant treatment strategies include poor bioavailability, poor stability, and poor retention in the joint. For example, oral intake of exogenous antioxidants has limited access to the joint space, and intra-articular injections require frequent dosing to provide therapeutic effects. Advancements in ROS-scavenging nanomaterials, also known as nanozymes, leverage bioactive material properties to improve delivery and retention. Material properties of nanozymes can be tuned to overcome physiological barriers in the knee. However, the clinical application of these nanozymes is still limited, and studies to understand their utility in treating OA are still in their infancy. The objective of this review is to evaluate current antioxidant treatment strategies and the development of nanozymes as a potential alternative to conventional small molecules and enzymes.
Collapse
Affiliation(s)
| | | | | | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (J.L.A.)
| |
Collapse
|
4
|
Deshmukh R. Rheumatoid arthritis: Pathophysiology, current therapeutic strategies and recent advances in targeted drug delivery system. MATERIALS TODAY COMMUNICATIONS 2023; 35:105877. [DOI: 10.1016/j.mtcomm.2023.105877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Han Y, Huang S. Nanomedicine is more than a supporting role in rheumatoid arthritis therapy. J Control Release 2023; 356:142-161. [PMID: 36863691 DOI: 10.1016/j.jconrel.2023.02.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Rheumatoid arthritis(RA) is an autoimmune disorder that affects the joints. Various medications successfully alleviate the symptoms of RA in clinical. Still, few therapy strategies can cure RA, especially when joint destruction begins, and there is currently no effective bone-protective treatment to reverse the articular damage. Furthermore, the RA medications now used in clinical practice accompany various adverse side effects. Nanotechnology can improve the pharmacokinetics of traditional anti-RA drugs and therapeutic precision through targeting modification. Although the clinical application of nanomedicines for RA is in its infancy, preclinical research is rising. Current anti-RA nano-drug studies mainly focus on the following: drug delivery systems, nanomedicines with anti-inflammatory and anti-arthritic properties, biomimetic design with better biocompatibility and therapeutic features, and nanoparticle-dominated energy conversion therapies. These therapies have shown promising therapeutic benefits in animal models, indicating that nanomedicines are a potential solution to the current bottleneck in RA treatment. This review will summarize the present state of anti-RA nano-drug research.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Shilei Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
6
|
Tekade M, Pingale P, Gupta R, Pawar B, Tekade RK, Sharma MC. Recent Advances in Polymer-Based Nanomaterials for Non-Invasive Photothermal Therapy of Arthritis. Pharmaceutics 2023; 15:pharmaceutics15030735. [PMID: 36986596 PMCID: PMC10058747 DOI: 10.3390/pharmaceutics15030735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
To date, nanomaterials have been widely used for the treatment and diagnosis of rheumatoid arthritis. Amongst various nanomaterials, polymer-based nanomaterials are becoming increasingly popular in nanomedicine due to their functionalised fabrication and easy synthesis, making them biocompatible, cost-effective, biodegradable, and efficient nanocarriers for the delivery of drugs to a specific target cell. They act as photothermal reagents with high absorption in the near-infrared region that can transform near-infrared light into localised heat with fewer side effects, provide easier integration with existing therapies, and offer increased effectiveness. They have been combined with photothermal therapy to understand the chemical and physical activities behind the stimuli-responsiveness of polymer nanomaterials. In this review article, we provide detailed information regarding the recent advances in polymer nanomaterials for the non-invasive photothermal treatment of arthritis. The synergistic effect of polymer nanomaterials and photothermal therapy has enhanced the treatment and diagnosis of arthritis and reduced the side effects of drugs in the joint cavity. In addition, further novel challenges and future perspectives must be resolved to advance polymer nanomaterials for the photothermal therapy of arthritis.
Collapse
Affiliation(s)
- Muktika Tekade
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshila Campus, Khandwa Road, Indore 452001, Madhya Pradesh, India
- Correspondence: (M.T.); (R.K.T.)
| | - Prashant Pingale
- Department of Pharmaceutics, Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik 422005, Maharashtra, India
| | - Rachna Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Bhakti Pawar
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
- Correspondence: (M.T.); (R.K.T.)
| | - Mukesh Chandra Sharma
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshila Campus, Khandwa Road, Indore 452001, Madhya Pradesh, India
| |
Collapse
|
7
|
Logesh K, Raj B, Bhaskaran M, Thirumaleshwar S, Gangadharappa H, Osmani R, Asha Spandana K. Nanoparticulate drug delivery systems for the treatment of rheumatoid arthritis: A comprehensive review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Wang N, Xie Y, Xi Z, Mi Z, Deng R, Liu X, Kang R, Liu X. Hope for bone regeneration: The versatility of iron oxide nanoparticles. Front Bioeng Biotechnol 2022; 10:937803. [PMID: 36091431 PMCID: PMC9452849 DOI: 10.3389/fbioe.2022.937803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Although bone tissue has the ability to heal itself, beyond a certain point, bone defects cannot rebuild themselves, and the challenge is how to promote bone tissue regeneration. Iron oxide nanoparticles (IONPs) are a magnetic material because of their excellent properties, which enable them to play an active role in bone regeneration. This paper reviews the application of IONPs in bone tissue regeneration in recent years, and outlines the mechanisms of IONPs in bone tissue regeneration in detail based on the physicochemical properties, structural characteristics and safety of IONPs. In addition, a bibliometric approach has been used to analyze the hot spots and trends in the field in order to identify future directions. The results demonstrate that IONPs are increasingly being investigated in bone regeneration, from the initial use as magnetic resonance imaging (MRI) contrast agents to later drug delivery vehicles, cell labeling, and now in combination with stem cells (SCs) composite scaffolds. In conclusion, based on the current research and development trends, it is more inclined to be used in bone tissue engineering, scaffolds, and composite scaffolds.
Collapse
Affiliation(s)
- Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yimin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zehua Mi
- Hospital for Skin Diseases, Institute of Dermatology Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiyu Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Liu Y, Xu Z, Qiao M, Cai H, Zhu Z. Metal-based nano-delivery platform for treating bone disease and regeneration. Front Chem 2022; 10:955993. [PMID: 36017162 PMCID: PMC9395639 DOI: 10.3389/fchem.2022.955993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Owing to their excellent characteristics, such as large specific surface area, favorable biosafety, and versatile application, nanomaterials have attracted significant attention in biomedical applications. Among them, metal-based nanomaterials containing various metal elements exhibit significant bone tissue regeneration potential, unique antibacterial properties, and advanced drug delivery functions, thus becoming crucial development platforms for bone tissue engineering and drug therapy for orthopedic diseases. Herein, metal-based drug-loaded nanomaterial platforms are classified and introduced, and the achievable drug-loading methods are comprehensively generalized. Furthermore, their applications in bone tissue engineering, osteoarthritis, orthopedic implant infection, bone tumor, and joint lubrication are reviewed in detail. Finally, the merits and demerits of the current metal-based drug-loaded nanomaterial platforms are critically discussed, and the challenges faced to realize their future applications are summarized.
Collapse
Affiliation(s)
| | | | | | - He Cai
- *Correspondence: He Cai, ; Zhou Zhu,
| | - Zhou Zhu
- *Correspondence: He Cai, ; Zhou Zhu,
| |
Collapse
|
10
|
Lachowicz D, Stroud J, Hankiewicz JH, Gassen R, Kmita A, Stepień J, Celinski Z, Sikora M, Zukrowski J, Gajewska M, Przybylski M. One-Step Preparation of Highly Stable Copper-Zinc Ferrite Nanoparticles in Water Suitable for MRI Thermometry. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:4001-4018. [PMID: 35573108 PMCID: PMC9097161 DOI: 10.1021/acs.chemmater.2c00079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/01/2022] [Indexed: 05/03/2023]
Abstract
Superparamagnetic ferrite nanoparticles coated with a polymer layer are widely used for biomedical applications. The objective of this work is to design nanoparticles as a magnetic resonance imaging (MRI) temperature-sensitive contrast agent. Copper-zinc ferrite nanoparticles coated with a poly(ethylene glycol) (PEG) layer are synthesized using a one-step thermal decomposition method in a polymer matrix. The resulting nanoparticles are stable in water and biocompatible. Using Mössbauer spectroscopy and magnetometry, it was determined that the grown nanoparticles exhibit superparamagnetic properties. Embedding these particles into an agarose gel resulted in significant modification of water proton relaxation times T 1, T 2, and T 2* determined by nuclear magnetic resonance measurements. The results of the spin-echo T 2-weighted MR images of an aqueous phantom with embedded Cu0.08Zn0.54Fe2.38O4 nanoparticles in the presence of a strong temperature gradient show a strong correlation between the temperature and the image intensity. The presented results support the hypothesis that CuZn ferrite nanoparticles can be used as a contrast agent for MRI thermometry.
Collapse
Affiliation(s)
- Dorota Lachowicz
- Academic
Centre for Materials and Nanotechnology, AGH University of Science
and Technology, 30-059 Krakow, Poland
| | - John Stroud
- Center
for the Biofrontiers Institute, University of Colorado Colorado Springs, 1420 Austin Bluffs Pkway, Colorado Springs, Colorado 80918, United States
| | - Janusz H. Hankiewicz
- Center
for the Biofrontiers Institute, University of Colorado Colorado Springs, 1420 Austin Bluffs Pkway, Colorado Springs, Colorado 80918, United States
| | - River Gassen
- Center
for the Biofrontiers Institute, University of Colorado Colorado Springs, 1420 Austin Bluffs Pkway, Colorado Springs, Colorado 80918, United States
| | - Angelika Kmita
- Academic
Centre for Materials and Nanotechnology, AGH University of Science
and Technology, 30-059 Krakow, Poland
| | - Joanna Stepień
- Academic
Centre for Materials and Nanotechnology, AGH University of Science
and Technology, 30-059 Krakow, Poland
| | - Zbigniew Celinski
- Center
for the Biofrontiers Institute, University of Colorado Colorado Springs, 1420 Austin Bluffs Pkway, Colorado Springs, Colorado 80918, United States
| | - Marcin Sikora
- Academic
Centre for Materials and Nanotechnology, AGH University of Science
and Technology, 30-059 Krakow, Poland
| | - Jan Zukrowski
- Academic
Centre for Materials and Nanotechnology, AGH University of Science
and Technology, 30-059 Krakow, Poland
| | - Marta Gajewska
- Academic
Centre for Materials and Nanotechnology, AGH University of Science
and Technology, 30-059 Krakow, Poland
| | - Marek Przybylski
- Academic
Centre for Materials and Nanotechnology, AGH University of Science
and Technology, 30-059 Krakow, Poland
- Faculty
of Physics and Applied Computer Science, AGH University of Science
and Technology, 30-059 Krakow, Poland
| |
Collapse
|
11
|
Recent Advances of Magnetic Gold Hybrids and Nanocomposites, and Their Potential Biological Applications. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8040038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Magnetic gold nanoparticles (mGNP) have become a great interest of research for nanomaterial scientists because of their significant magnetic and plasmonic properties applicable in biomedical applications. Various synthetic approaches and surface modification techniques have been used for mGNP including the most common being the coprecipitation, thermal decomposition, and microemulsion methods in addition to the Brust Schiffrin technique, which involves the reduction of metal precursors in a two-phase system (water and toluene) in the presence of alkanethiol. The hybrid magnetic–plasmonic nanoparticles based on iron core and gold shell are being considered as potential theranostic agents. In this critical review, in addition to future works, we have summarized recent developments for synthesis and surface modification of mGNP with their applications in modern biomedical science such as drug and gene delivery, bioimaging, biosensing, and neuro-regeneration, neuro-degenerative and arthritic disorders. This review includes techniques and biological applications of mGNP majorly based on research from the previous six years.
Collapse
|
12
|
Oshi MA, Haider A, Siddique MI, Zeb A, Jamal SB, Khalil AAK, Naeem M. Nanomaterials for chronic inflammatory diseases: the current status and future prospects. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Jensen NB, Justesen SD, Larsen A, Ernst E, Pedersen LH. A systematic overview of the spermatotoxic and genotoxic effects of methotrexate, ganciclovir and mycophenolate mofetil. Acta Obstet Gynecol Scand 2021; 100:1557-1580. [PMID: 33755191 DOI: 10.1111/aogs.14151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/23/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Immunosuppressant drugs are increasingly being used in the reproductive years. Theoretically, such medications could affect fetal health either through changes in the sperm DNA or through fetal exposure caused by a presence in the seminal fluid. This systematic overview summarizes existing literature on the spermatotoxic and genotoxic potentials of methotrexate (MTX), a drug widely used to treat rheumatic and dermatologic diseases, and mycophenolate mofetil (MMF), which alone or supplemented with ganciclovir (GCV) may be crucial for the survival of organ transplants. MATERIAL AND METHODS The systematic overview was performed in accordance with the PRISMA guidelines: A systematic literature search of the MEDLINE and Embase databases was done using a combination of relevant terms to search for studies on spermatotoxic or genotoxic changes related to treatment with MTX, GCV or MMF. The search was restricted to English language literature, and to in vivo animal studies (mammalian species) and clinical human studies. RESULTS A total of 102 studies were identified, hereof 25 human and 77 animal studies. For MTX, human studies of immunosuppressive dosages show transient effect on sperm quality parameters, which return to reference values within 3 months. No human studies have investigated the sperm DNA damaging effect of MTX, but in other organs the genotoxic effects of immunosuppressive doses of MTX are fluctuating. In animals, immunosuppressive and cytotoxic doses of MTX adversely affect sperm quality parameters and show widespread genotoxic damages in various organs. Cytotoxic doses transiently change the DNA material in all cell stages of spermatogenesis in rodents. For GCV and MMF, data are limited and the results are indeterminate, for which reason spermatotoxic and genotoxic potentials cannot be excluded. CONCLUSIONS Data from human and animal studies indicate transient spermatotoxic and genotoxic potentials of immunosuppressive and cytotoxic doses of MTX. There are a limited number of studies investigating GCV and MMF.
Collapse
Affiliation(s)
| | | | - Agnete Larsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Erik Ernst
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Laboratory for Reproduction, Institute of Anatomy, Aarhus University, Aarhus, Denmark
| | - Lars H Pedersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
14
|
Hosseinikhah SM, Barani M, Rahdar A, Madry H, Arshad R, Mohammadzadeh V, Cucchiarini M. Nanomaterials for the Diagnosis and Treatment of Inflammatory Arthritis. Int J Mol Sci 2021; 22:3092. [PMID: 33803502 PMCID: PMC8002885 DOI: 10.3390/ijms22063092] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials have received increasing attention due to their unique chemical and physical properties for the treatment of rheumatoid arthritis (RA), the most common complex multifactorial joint-associated autoimmune inflammatory disorder. RA is characterized by an inflammation of the synovium with increased production of proinflammatory cytokines (IL-1, IL-6, IL-8, and IL-10) and by the destruction of the articular cartilage and bone, and it is associated with the development of cardiovascular disorders such as heart attack and stroke. While a number of imaging tools allow for the monitoring and diagnosis of inflammatory arthritis, and despite ongoing work to enhance their sensitivity and precision, the proper assessment of RA remains difficult particularly in the early stages of the disease. Our goal here is to describe the benefits of applying various nanomaterials as next-generation RA imaging and detection tools using contrast agents and nanosensors and as improved drug delivery systems for the effective treatment of the disease.
Collapse
Affiliation(s)
- Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 761691411, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-9861, Iran
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 91886-17871, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| |
Collapse
|
15
|
Stein R, Friedrich B, Mühlberger M, Cebulla N, Schreiber E, Tietze R, Cicha I, Alexiou C, Dutz S, Boccaccini AR, Unterweger H. Synthesis and Characterization of Citrate-Stabilized Gold-Coated Superparamagnetic Iron Oxide Nanoparticles for Biomedical Applications. Molecules 2020; 25:E4425. [PMID: 32993144 PMCID: PMC7583944 DOI: 10.3390/molecules25194425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Surface-functionalized gold-coated superparamagnetic iron oxide nanoparticles (Au-SPIONs) may be a useful tool in various biomedical applications. To obtain Au-SPIONs, gold salt was precipitated onto citrate-stabilized SPIONs (Cit-SPIONs) using a simple, aqueous one-pot technique inspired by the Turkevich method of gold nanoparticle synthesis. By the further stabilization of the Au-SPION surface with additional citrate (Cit-Au-SPIONs), controllable and reproducible Z-averages enhanced long-term dispersion stability and moderate dispersion pH values were achieved. The citrate concentration of the reaction solution and the gold/iron ratio was found to have a major influence on the particle characteristics. While the gold-coating reduced the saturation magnetization to 40.7% in comparison to pure Cit-SPIONs, the superparamagnetic behavior of Cit-Au-SPIONs was maintained. The formation of nanosized gold on the SPION surface was confirmed by X-ray diffraction measurements. Cit-Au-SPION concentrations of up to 100 µg Fe/mL for 48 h had no cytotoxic effect on Jurkat cells. At a particle concentration of 100 µg Fe/mL, Jurkat cells were found to take up Cit-Au-SPIONs after 24 h of incubation. A significantly higher attachment of thiol-containing L-cysteine to the particle surface was observed for Cit-Au-SPIONs (53%) in comparison to pure Cit-SPIONs (7%).
Collapse
Affiliation(s)
- René Stein
- Department of Otorhinolaryngology-Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, Universitätsklinikum, 91054 Erlangen, Germany; (B.F.); (M.M.); (N.C.); (E.S.); (R.T.); (I.C.); (C.A.)
| | - Bernhard Friedrich
- Department of Otorhinolaryngology-Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, Universitätsklinikum, 91054 Erlangen, Germany; (B.F.); (M.M.); (N.C.); (E.S.); (R.T.); (I.C.); (C.A.)
| | - Marina Mühlberger
- Department of Otorhinolaryngology-Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, Universitätsklinikum, 91054 Erlangen, Germany; (B.F.); (M.M.); (N.C.); (E.S.); (R.T.); (I.C.); (C.A.)
| | - Nadine Cebulla
- Department of Otorhinolaryngology-Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, Universitätsklinikum, 91054 Erlangen, Germany; (B.F.); (M.M.); (N.C.); (E.S.); (R.T.); (I.C.); (C.A.)
| | - Eveline Schreiber
- Department of Otorhinolaryngology-Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, Universitätsklinikum, 91054 Erlangen, Germany; (B.F.); (M.M.); (N.C.); (E.S.); (R.T.); (I.C.); (C.A.)
| | - Rainer Tietze
- Department of Otorhinolaryngology-Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, Universitätsklinikum, 91054 Erlangen, Germany; (B.F.); (M.M.); (N.C.); (E.S.); (R.T.); (I.C.); (C.A.)
| | - Iwona Cicha
- Department of Otorhinolaryngology-Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, Universitätsklinikum, 91054 Erlangen, Germany; (B.F.); (M.M.); (N.C.); (E.S.); (R.T.); (I.C.); (C.A.)
| | - Christoph Alexiou
- Department of Otorhinolaryngology-Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, Universitätsklinikum, 91054 Erlangen, Germany; (B.F.); (M.M.); (N.C.); (E.S.); (R.T.); (I.C.); (C.A.)
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693 Ilmenau, Germany;
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany;
| | - Harald Unterweger
- Department of Otorhinolaryngology-Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kroener-Fresenius-Stiftung-Professorship, Universitätsklinikum, 91054 Erlangen, Germany; (B.F.); (M.M.); (N.C.); (E.S.); (R.T.); (I.C.); (C.A.)
| |
Collapse
|
16
|
Liu Y, Cao F, Sun B, Bellanti JA, Zheng SG. Magnetic nanoparticles: A new diagnostic and treatment platform for rheumatoid arthritis. J Leukoc Biol 2020; 109:415-424. [PMID: 32967052 DOI: 10.1002/jlb.5mr0420-008rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/30/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory condition characterized by articular synovitis that eventually leads to the destruction of cartilage and bone in the joints with resulting pain and disability. The current therapies for RA are divided into 4 categories: non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, nonbiological disease-modifying anti-rheumatic drugs (DMARDs), and biological DMARDs. Each drug grouping is beset with significant setbacks that not only include limited drug bioavailability and high clearance, but also varying degrees of drug toxicity to normal tissues. Recently, nanotechnology has provided a promising tool for the development of novel therapeutic and diagnostic systems in the area of malignant and inflammatory diseases. Among these, magnetic nanoparticles (MNPs) have provided an attractive carrier option for delivery of therapeutic agents. Armed with an extra magnetic probe, MNPs are capable of more accurately targeting the local lesion with avoidance of unpleasant systemic side effects. This review aims to provide an introduction to the applications of magnetic nanoparticles in RA, focusing on the latest advances, challenges, and opportunities for future development.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Clinical Immunology Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fenglin Cao
- Department of Internal Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Medical University, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, District of Columbia, United States
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, United States
| |
Collapse
|
17
|
Wang P, Li A, Yu L, Chen Y, Xu D. Energy Conversion-Based Nanotherapy for Rheumatoid Arthritis Treatment. Front Bioeng Biotechnol 2020; 8:652. [PMID: 32754578 PMCID: PMC7366901 DOI: 10.3389/fbioe.2020.00652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by synovial hyperplasia and cartilage/bone destruction, which results in a high disability rate on human health and a huge burden on social economy. At present, traditional therapies based on drug therapy still cannot cure RA, in accompany with the potential serious side effects. Based on the development of nanobiotechnology and nanomedicine, energy conversion-based nanotherapy has demonstrated distinctive potential and performance in RA treatment. This strategy employs specific nanoparticles with intrinsic physiochemical properties to target lesions with the following activation by diverse external stimuli, such as light, ultrasound, microwave, and radiation. These nanoagents subsequently produce therapeutic effects or release therapeutic factors to promote necrotic apoptosis of RA inflammatory cells, reduce the concentration of related inflammatory factors, relieve the symptoms of RA, which are expected to ultimately improve the life quality of RA patients. This review highlights and discusses the versatile biomedical applications of energy conversion-based nanotherapy in efficient RA treatment, in together with the deep clarification of the facing challenges and further prospects on the final clinical translations of these energy conversion-based nanotherapies against RA.
Collapse
Affiliation(s)
- Pingping Wang
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ao Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Luodan Yu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Di Xu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Iancu SD, Albu C, Chiriac L, Moldovan R, Stefancu A, Moisoiu V, Coman V, Szabo L, Leopold N, Bálint Z. Assessment of Gold-Coated Iron Oxide Nanoparticles as Negative T2 Contrast Agent in Small Animal MRI Studies. Int J Nanomedicine 2020; 15:4811-4824. [PMID: 32753867 PMCID: PMC7355080 DOI: 10.2147/ijn.s253184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Magnetic resonance imaging (MRI) contrast agents are pharmaceuticals that enable a better visualization of internal body structures. In this study, we present the synthesis, MRI signal enhancement capabilities, in vitro as well as in vivo cytotoxicity results of gold-coated iron oxide nanoparticles (Fe3O4@AuNPs) as potential contrast agents. METHODS Fe3O4@AuNPs were obtained by synthesizing iron oxide nanoparticles and gradually coating them with gold. The obtained Fe3O4@AuNPs were characterized by spectroscopies, transmission electron microscopy (TEM) and energy dispersive X-ray diffraction. The effect of the nanoparticles on the MRI signal was tested using a 7T Bruker PharmaScan system. Cytotoxicity tests were made in vitro on Fe3O4@AuNP-treated retinal pigment epithelium cells by WST-1 tests and in vivo by following histopathological changes in rats after injection of Fe3O4@AuNPs. RESULTS Stable Fe3O4@AuNPs were successfully prepared following a simple and fast protocol (<1h worktime) and identified using TEM. The cytotoxicity tests on cells have shown biocompatibility of Fe3O4@AuNPs at small concentrations of Fe (<1.95×10-8 mg/cell). Whereas, at higher Fe concentrations (eg 7.5×10-8 mg/cell), cell viability decreased to 80.88±5.03%, showing a mild cytotoxic effect. MRI tests on rats showed an optimal Fe3O4@AuNPs concentration of 6mg/100g body weight to obtain high-quality images. The histopathological studies revealed significant transient inflammatory responses in the time range from 2 hours to 14 days after injection and focal cellular alterations in several organs, with the lung being the most affected organ. These results were confirmed by hyperspectral microscopic imaging of the same, but unstained tissues. In most organs, the inflammatory responses and sublethal cellular damage appeared to be transitory, except for the kidneys, where the glomerular damage indicated progression towards glomerular sclerosis. CONCLUSION The obtained stable, gold covered, iron oxide nanoparticles with reduced cytotoxicity, gave a negative T2 signal in the MRI, which makes them suitable for candidates as contrast agent in small animal MRI applications.
Collapse
Affiliation(s)
- Stefania D Iancu
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca400084, Romania
| | - Camelia Albu
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca400349, Romania
| | - Liviu Chiriac
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca400349, Romania
- National Magnetic Resonance Center, Babeș-Bolyai University, Cluj-Napoca400084, Romania
| | - Remus Moldovan
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca400349, Romania
| | - Andrei Stefancu
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca400084, Romania
| | - Vlad Moisoiu
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca400084, Romania
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca400349, Romania
| | - Vasile Coman
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca400372, Romania
| | - Laszlo Szabo
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca400084, Romania
| | - Nicolae Leopold
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca400084, Romania
| | - Zoltán Bálint
- IMOGEN Medical Research Institute, County Clinical Emergency Hospital, Cluj-Napoca400012, Romania
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca400084, Romania
| |
Collapse
|
19
|
Huang Y, Guo L, Chitti R, Sreeharsha N, Mishra A, Gubbiyappa SK, Singh Y. Wogonin ameliorate complete Freund's adjuvant induced rheumatoid arthritis via targeting NF-κB/MAPK signaling pathway. Biofactors 2020; 46:283-291. [PMID: 31721330 DOI: 10.1002/biof.1585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic and accelerated autoimmune illness with proliferative and damaging synovitis, resulting in joint death and cartilage and bone erosion. This study focused on the potential therapeutic effect of wogonin on complete Freund's adjuvant (CFA) induced RA in rats and the underlying mechanisms. Arthritis was experimentally caused in rats by subcutaneously injecting 0.1 mL of CFA into the subplantar area of the left hind paw under moderate anesthesia on day zero. The regular oral doses of indomethacin/wogonin began on day zero and proceeded after injection to day 35. Wogonin reduced arthritic score considerably, enhanced body weight, and reduced paw thickness. Wogonin also boosted red blood cell considerably along with hemoglobin and reduced white blood cell count and erythrocyte sedimentation rate. Wogonin substantially improved an altered level of oxidative stress markers, antioxidant proteins, and inflammatory cytokines in a dose-dependent way. Wogonin inhibited p38 phosphorylation triggered by CFA and p65 nuclear translocation.
Collapse
Affiliation(s)
- Yuntai Huang
- Department of Rheumatology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan Province, China
| | - Lubo Guo
- Department of Pharmacy, Jinan Central Hospital, Jinan, Shandong Province, China
| | - Renukaradhya Chitti
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, Mandya, Karnataka, India
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Anurag Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | | | - Yogendra Singh
- Department of Pharmaceutical Sciences, Mahatma Gandhi College of Pharmaceutical Sciences, Sitapura, Jaipur, India
| |
Collapse
|